Netty的Channel和Unsafe组件 源码解析

pull/63/head
AmyliaY 4 years ago
parent ca93491622
commit 55a15afbf7

@ -138,9 +138,6 @@
### Netty 粘拆包及解决方案 ### Netty 粘拆包及解决方案
* [TCP粘拆包问题及Netty中的解决方案](docs/Netty/TCP粘拆包/TCP粘拆包问题及Netty中的解决方案.md) * [TCP粘拆包问题及Netty中的解决方案](docs/Netty/TCP粘拆包/TCP粘拆包问题及Netty中的解决方案.md)
### Netty 编解码
* [Java序列化缺点与主流编解码框架](docs/Netty/Netty编解码/Java序列化缺点与主流编解码框架.md)
### Netty 多协议开发 ### Netty 多协议开发
* [基于HTTP协议的Netty开发](docs/Netty/Netty多协议开发/基于HTTP协议的Netty开发.md) * [基于HTTP协议的Netty开发](docs/Netty/Netty多协议开发/基于HTTP协议的Netty开发.md)
* [基于WebSocket协议的Netty开发](docs/Netty/Netty多协议开发/基于WebSocket协议的Netty开发.md) * [基于WebSocket协议的Netty开发](docs/Netty/Netty多协议开发/基于WebSocket协议的Netty开发.md)

@ -1 +1,954 @@
努力编写中... 类似于 java.nio包 的 ChannelNetty 提供了自己的 Channel 和其子类实现,用于异步 I/O操作 等。Unsafe 是 Channel 的内部接口,聚合在 Channel 中协助进行网络读写相关的操作,因为它的设计初衷就是 Channel 的内部辅助类,不应该被 Netty框架 的上层使用者调用,所以被命名为 Unsafe。
## Channel 组件
Netty 的 **Channel组件 是 Netty 对网络操作的封装****如 网络数据的读写,与客户端建立连接**,主动关闭连接 等,也包含了 Netty框架 相关的一些功能,如 获取该 Chanel 的 **EventLoop、ChannelPipeline** 等。另外Netty 并没有直接使用 java.nio包 的 SocketChannel和ServerSocketChannel而是**使用 NioSocketChannel和NioServerSocketChannel 对其进行了进一步的封装**。下面我们先从 Channel接口 的API开始分析然后看一下其重要子类的源码实现。
为了便于后面的阅读源码,我们先看下 NioSocketChannel 和 NioServerSocketChannel 的继承关系类图。
![在这里插入图片描述](../../../images/Netty/Netty的Channel组件.png)
#### Channel 接口
```java
public interface Channel extends AttributeMap, ChannelOutboundInvoker, Comparable<Channel> {
/**
* Channel 需要注册到 EventLoop 的多路复用器上,用于处理 I/O事件
* EventLoop 实际上就是处理网络读写事件的 Reactor线程。
*/
EventLoop eventLoop();
/**
* ChannelMetadata 封装了 TCP参数配置
*/
ChannelMetadata metadata();
/**
* 对于服务端Channel而言它的父Channel为空
* 对于客户端Channel它的 父Channel 就是创建它的 ServerSocketChannel
*/
Channel parent();
/**
* 每个 Channel 都有一个全局唯一标识
*/
ChannelId id();
/**
* 获取当前 Channel 的配置信息,如 CONNECT_TIMEOUT_MILLIS
*/
ChannelConfig config();
/**
* 当前 Channel 是否已经打开
*/
boolean isOpen();
/**
* 当前 Channel 是否已注册进 EventLoop
*/
boolean isRegistered();
/**
* 当前 Channel 是否已激活
*/
boolean isActive();
/**
* 当前 Channel 的本地绑定地址
*/
SocketAddress localAddress();
/**
* 当前 Channel 的远程绑定地址
*/
SocketAddress remoteAddress();
/**
* 当前 Channel 是否可写
*/
boolean isWritable();
/**
* 当前 Channel 内部的 Unsafe对象
*/
Unsafe unsafe();
/**
* 当前 Channel 持有的 ChannelPipeline
*/
ChannelPipeline pipeline();
/**
* 从当前 Channel 中读取数据到第一个 inbound缓冲区 中,如果数据被成功读取,
* 触发ChannelHandler.channelRead(ChannelHandlerContext,Object)事件。
* 读取操作API调用完成之后紧接着会触发ChannelHandler.channelReadComplete(ChannelHandlerContext)事件,
* 这样业务的ChannelHandler可以决定是否需要继续读取数据。如果己经有读操作请求被挂起则后续的读操作会被忽略。
*/
@Override
Channel read();
/**
* 将之前写入到发送环形数组中的消息全部写入到目标Chanel中发送给通信对方
*/
@Override
Channel flush();
}
```
#### AbstractChannel
```java
public abstract class AbstractChannel extends DefaultAttributeMap implements Channel {
// 父Channel
private final Channel parent;
// Channel的全局唯一标识
private final ChannelId id;
// 内部辅助类 Unsafe
private final Unsafe unsafe;
// Netty 会为每一个 channel 创建一个 pipeline
private final DefaultChannelPipeline pipeline;
// 本地地址
private volatile SocketAddress localAddress;
// 远程主机地址
private volatile SocketAddress remoteAddress;
// 注册到了哪个 EventLoop 上
private volatile EventLoop eventLoop;
// 是否已注册
private volatile boolean registered;
/**
* channnel 会将 网络IO操作 触发到 ChannelPipeline 对应的事件方法。
* Netty 基于事件驱动,我们也可以理解为当 Chnanel 进行 IO操作 时会产生对应的IO 事件,
* 然后驱动事件在 ChannelPipeline 中传播,由对应的 ChannelHandler 对事件进行拦截和处理,
* 不关心的事件可以直接忽略
*/
@Override
public ChannelFuture bind(SocketAddress localAddress) {
return pipeline.bind(localAddress);
}
@Override
public ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {
return pipeline.bind(localAddress, promise);
}
@Override
public ChannelFuture connect(SocketAddress remoteAddress) {
return pipeline.connect(remoteAddress);
}
@Override
public ChannelFuture connect(SocketAddress remoteAddress, SocketAddress localAddress) {
return pipeline.connect(remoteAddress, localAddress);
}
@Override
public ChannelFuture connect(SocketAddress remoteAddress, ChannelPromise promise) {
return pipeline.connect(remoteAddress, promise);
}
@Override
public ChannelFuture connect(SocketAddress remoteAddress, SocketAddress localAddress, ChannelPromise promise) {
return pipeline.connect(remoteAddress, localAddress, promise);
}
@Override
public ChannelFuture disconnect() {
return pipeline.disconnect();
}
@Override
public ChannelFuture disconnect(ChannelPromise promise) {
return pipeline.disconnect(promise);
}
@Override
public ChannelFuture close() {
return pipeline.close();
}
@Override
public ChannelFuture close(ChannelPromise promise) {
return pipeline.close(promise);
}
@Override
public ChannelFuture deregister() {
return pipeline.deregister();
}
@Override
public ChannelFuture deregister(ChannelPromise promise) {
return pipeline.deregister(promise);
}
@Override
public Channel flush() {
pipeline.flush();
return this;
}
@Override
public Channel read() {
pipeline.read();
return this;
}
@Override
public ChannelFuture write(Object msg) {
return pipeline.write(msg);
}
@Override
public ChannelFuture write(Object msg, ChannelPromise promise) {
return pipeline.write(msg, promise);
}
@Override
public ChannelFuture writeAndFlush(Object msg) {
return pipeline.writeAndFlush(msg);
}
@Override
public ChannelFuture writeAndFlush(Object msg, ChannelPromise promise) {
return pipeline.writeAndFlush(msg, promise);
}
}
```
#### AbstractNioChannel
```java
public abstract class AbstractNioChannel extends AbstractChannel {
// AbstractNioChannel 是 NioSocketChannel和NioServerSocketChannel 的公共父类,所以定义
// 了一个 java.nio 的 SocketChannel 和 ServerSocketChannel 的公共父类 SelectableChannel
// 用于设置 SelectableChannel参数 和进行 IO操作
private final SelectableChannel ch;
// 它代表了 JDK 的 SelectionKey.OP_READ
protected final int readInterestOp;
// 该 SelectionKey 是 Channel 注册到 EventLoop 后返回的,
// 由于 Channel 会面临多个业务线程的并发写操作,当 SelectionKey 被修改了,
// 需要让其他业务线程感知到变化所以使用volatile保证修改的可见性
volatile SelectionKey selectionKey;
/**
* Channel 的注册
*/
@Override
protected void doRegister() throws Exception {
boolean selected = false;
for (;;) {
try {
selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this);
return;
} catch (CancelledKeyException e) {
if (!selected) {
// Force the Selector to select now as the "canceled" SelectionKey may still be
// cached and not removed because no Select.select(..) operation was called yet.
eventLoop().selectNow();
selected = true;
} else {
// We forced a select operation on the selector before but the SelectionKey is still cached
// for whatever reason. JDK bug ?
throw e;
}
}
}
}
protected SelectableChannel javaChannel() {
return ch;
}
@Override
protected void doBeginRead() throws Exception {
// Channel.read() 或 ChannelHandlerContext.read() 被调用
final SelectionKey selectionKey = this.selectionKey;
if (!selectionKey.isValid()) {
return;
}
readPending = true;
final int interestOps = selectionKey.interestOps();
if ((interestOps & readInterestOp) == 0) {
selectionKey.interestOps(interestOps | readInterestOp);
}
}
}
```
#### NioServerSocketChannel
```java
public class NioServerSocketChannel extends AbstractNioMessageChannel
implements io.netty.channel.socket.ServerSocketChannel {
// java.nio 包的内容,用于获取 java.nio.channels.ServerSocketChannel 实例
private static final SelectorProvider DEFAULT_SELECTOR_PROVIDER = SelectorProvider.provider();
private static ServerSocketChannel newSocket(SelectorProvider provider) {
try {
/**
* 获取的是 java.nio.channels.ServerSocketChannel 实例
*/
return provider.openServerSocketChannel();
} catch (IOException e) {
throw new ChannelException("Failed to open a server socket.", e);
}
}
/**
* Create a new instance
*/
public NioServerSocketChannel() {
this(newSocket(DEFAULT_SELECTOR_PROVIDER));
}
/**
* 在父类中完成了 非阻塞IO的配置及事件的注册
*/
public NioServerSocketChannel(ServerSocketChannel channel) {
super(null, channel, SelectionKey.OP_ACCEPT);
config = new NioServerSocketChannelConfig(this, javaChannel().socket());
}
/**
* 对 NioServerSocketChannel 来说,它的读取操作就是接收客户端的连接,创建 NioSocketChannel对象
*/
@Override
protected int doReadMessages(List<Object> buf) throws Exception {
// 首先通过 ServerSocketChannel 的 accept()方法 接收新的客户端连接,
// 获取 java.nio.channels.SocketChannel 对象
SocketChannel ch = SocketUtils.accept(javaChannel());
try {
// 如果获取到客户端连接对象 SocketChannel则利用当前的 NioServerSocketChannel、EventLoop
// 和 SocketChannel 创建新的 NioSocketChannel并添加到 buf 中
if (ch != null) {
buf.add(new NioSocketChannel(this, ch));
return 1;
}
} catch (Throwable t) {
logger.warn("Failed to create a new channel from an accepted socket.", t);
try {
ch.close();
} catch (Throwable t2) {
logger.warn("Failed to close a socket.", t2);
}
}
return 0;
}
}
```
#### NioSocketChannel
```java
public class NioSocketChannel extends AbstractNioByteChannel implements io.netty.channel.socket.SocketChannel {
// 与 NioServerSocketChannel 一样,也依赖了 java.nio包 的API
private static final SelectorProvider DEFAULT_SELECTOR_PROVIDER = SelectorProvider.provider();
/**
* 从这里可以看出NioSocketChannel 对 java.nio.channels.SocketChannel 做了进一步封装
* 使其 适用于 Netty框架
*/
private static SocketChannel newSocket(SelectorProvider provider) {
try {
return provider.openSocketChannel();
} catch (IOException e) {
throw new ChannelException("Failed to open a socket.", e);
}
}
/**
* Create a new instance
*/
public NioSocketChannel() {
this(DEFAULT_SELECTOR_PROVIDER);
}
public NioSocketChannel(SelectorProvider provider) {
this(newSocket(provider));
}
public NioSocketChannel(SocketChannel socket) {
this(null, socket);
}
public NioSocketChannel(Channel parent, SocketChannel socket) {
// 在父类中完成 非阻塞IO的配置注册事件
super(parent, socket);
config = new NioSocketChannelConfig(this, socket.socket());
}
@Override
protected SocketChannel javaChannel() {
return (SocketChannel) super.javaChannel();
}
@Override
public boolean isActive() {
SocketChannel ch = javaChannel();
return ch.isOpen() && ch.isConnected();
}
/**
* 与远程服务器建立连接
*/
@Override
protected boolean doConnect(SocketAddress remoteAddress, SocketAddress localAddress) throws Exception {
if (localAddress != null) {
doBind0(localAddress);
}
boolean success = false;
try {
// 根据远程地址建立TCP连接对连接结果进行判断
boolean connected = SocketUtils.connect(javaChannel(), remoteAddress);
if (!connected) {
selectionKey().interestOps(SelectionKey.OP_CONNECT);
}
success = true;
return connected;
} finally {
if (!success) {
doClose();
}
}
}
/**
* 关闭 Channel
*/
@Override
protected void doClose() throws Exception {
super.doClose();
javaChannel().close();
}
/**
* 从 Channel 中读取数据
*/
@Override
protected int doReadBytes(ByteBuf byteBuf) throws Exception {
final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
allocHandle.attemptedBytesRead(byteBuf.writableBytes());
return byteBuf.writeBytes(javaChannel(), allocHandle.attemptedBytesRead());
}
@Override
protected int doWriteBytes(ByteBuf buf) throws Exception {
final int expectedWrittenBytes = buf.readableBytes();
return buf.readBytes(javaChannel(), expectedWrittenBytes);
}
/**
* 向 Channel 中写数据
*/
@Override
protected void doWrite(ChannelOutboundBuffer in) throws Exception {
SocketChannel ch = javaChannel();
int writeSpinCount = config().getWriteSpinCount();
do {
if (in.isEmpty()) {
// All written so clear OP_WRITE
clearOpWrite();
// Directly return here so incompleteWrite(...) is not called.
return;
}
// Ensure the pending writes are made of ByteBufs only.
int maxBytesPerGatheringWrite = ((NioSocketChannelConfig) config).getMaxBytesPerGatheringWrite();
ByteBuffer[] nioBuffers = in.nioBuffers(1024, maxBytesPerGatheringWrite);
int nioBufferCnt = in.nioBufferCount();
// Always us nioBuffers() to workaround data-corruption.
// See https://github.com/netty/netty/issues/2761
switch (nioBufferCnt) {
case 0:
// We have something else beside ByteBuffers to write so fallback to normal writes.
writeSpinCount -= doWrite0(in);
break;
case 1: {
// Only one ByteBuf so use non-gathering write
// Zero length buffers are not added to nioBuffers by ChannelOutboundBuffer, so there is no need
// to check if the total size of all the buffers is non-zero.
ByteBuffer buffer = nioBuffers[0];
int attemptedBytes = buffer.remaining();
final int localWrittenBytes = ch.write(buffer);
if (localWrittenBytes <= 0) {
incompleteWrite(true);
return;
}
adjustMaxBytesPerGatheringWrite(attemptedBytes, localWrittenBytes, maxBytesPerGatheringWrite);
in.removeBytes(localWrittenBytes);
--writeSpinCount;
break;
}
default: {
// Zero length buffers are not added to nioBuffers by ChannelOutboundBuffer, so there is no need
// to check if the total size of all the buffers is non-zero.
// We limit the max amount to int above so cast is safe
long attemptedBytes = in.nioBufferSize();
final long localWrittenBytes = ch.write(nioBuffers, 0, nioBufferCnt);
if (localWrittenBytes <= 0) {
incompleteWrite(true);
return;
}
// Casting to int is safe because we limit the total amount of data in the nioBuffers to int above.
adjustMaxBytesPerGatheringWrite((int) attemptedBytes, (int) localWrittenBytes,
maxBytesPerGatheringWrite);
in.removeBytes(localWrittenBytes);
--writeSpinCount;
break;
}
}
} while (writeSpinCount > 0);
incompleteWrite(writeSpinCount < 0);
}
}
```
## Unsafe 功能简介
Unsafe接口 实际上是 **Channel接口 的辅助接口**,它不应该被用户代码直接调用。**实际的 IO读写操作 都是由 Unsafe接口 负责完成的**。
```java
public interface Channel extends AttributeMap, ChannelOutboundInvoker, Comparable<Channel> {
interface Unsafe {
/**
* 返回绑定的 本地地址
*/
SocketAddress localAddress();
/**
* 返回绑定的 远程地址
*/
SocketAddress remoteAddress();
/**
* 将 Channel 注册到 EventLoop 上
*/
void register(EventLoop eventLoop, ChannelPromise promise);
/**
* 绑定 本地地址 到 Channel 上
*/
void bind(SocketAddress localAddress, ChannelPromise promise);
/**
* 连接到远程服务器
*/
void connect(SocketAddress remoteAddress, SocketAddress localAddress, ChannelPromise promise);
/**
* 断开连接
*/
void disconnect(ChannelPromise promise);
/**
* 关闭 Channel
*/
void close(ChannelPromise promise);
/**
* 读就绪 网络事件
*/
void beginRead();
/**
* 发送数据
*/
void write(Object msg, ChannelPromise promise);
/**
* 将缓冲区的数据 刷到 Channel
*/
void flush();
}
}
```
#### AbstractUnsafe
```java
public abstract class AbstractChannel extends DefaultAttributeMap implements Channel {
protected abstract class AbstractUnsafe implements Unsafe {
/**
* 将当前 Unsafe 对应的 Channel 注册到 EventLoop 的多路复用器上,
* 然后调用 DefaultChannelPipeline 的 fireChannelRegistered()方法,
* 如果 Channel 被激活 则调用 DefaultChannelPipeline 的 fireChannelActive()方法
*/
@Override
public final void register(EventLoop eventLoop, final ChannelPromise promise) {
if (eventLoop == null) {
throw new NullPointerException("eventLoop");
}
if (isRegistered()) {
promise.setFailure(new IllegalStateException("registered to an event loop already"));
return;
}
if (!isCompatible(eventLoop)) {
promise.setFailure(
new IllegalStateException("incompatible event loop type: " + eventLoop.getClass().getName()));
return;
}
AbstractChannel.this.eventLoop = eventLoop;
if (eventLoop.inEventLoop()) {
register0(promise);
} else {
try {
eventLoop.execute(new Runnable() {
@Override
public void run() {
register0(promise);
}
});
} catch (Throwable t) {
logger.warn(
"Force-closing a channel whose registration task was not accepted by an event loop: {}",
AbstractChannel.this, t);
closeForcibly();
closeFuture.setClosed();
safeSetFailure(promise, t);
}
}
}
private void register0(ChannelPromise promise) {
try {
// check if the channel is still open as it could be closed in the mean time when the register
// call was outside of the eventLoop
if (!promise.setUncancellable() || !ensureOpen(promise)) {
return;
}
boolean firstRegistration = neverRegistered;
doRegister();
neverRegistered = false;
registered = true;
// Ensure we call handlerAdded(...) before we actually notify the promise. This is needed as the
// user may already fire events through the pipeline in the ChannelFutureListener.
pipeline.invokeHandlerAddedIfNeeded();
safeSetSuccess(promise);
pipeline.fireChannelRegistered();
// Only fire a channelActive if the channel has never been registered. This prevents firing
// multiple channel actives if the channel is deregistered and re-registered.
if (isActive()) {
if (firstRegistration) {
pipeline.fireChannelActive();
} else if (config().isAutoRead()) {
// This channel was registered before and autoRead() is set. This means we need to begin read
// again so that we process inbound data.
//
// See https://github.com/netty/netty/issues/4805
beginRead();
}
}
} catch (Throwable t) {
// Close the channel directly to avoid FD leak.
closeForcibly();
closeFuture.setClosed();
safeSetFailure(promise, t);
}
}
/**
* 绑定指定的端口,对于服务端 用于绑定监听端口,
* 对于客户端,主要用于指定 客户端Channel 的本地绑定Socket地址。
*/
@Override
public final void bind(final SocketAddress localAddress, final ChannelPromise promise) {
assertEventLoop();
if (!promise.setUncancellable() || !ensureOpen(promise)) {
return;
}
// See: https://github.com/netty/netty/issues/576
if (Boolean.TRUE.equals(config().getOption(ChannelOption.SO_BROADCAST)) &&
localAddress instanceof InetSocketAddress &&
!((InetSocketAddress) localAddress).getAddress().isAnyLocalAddress() &&
!PlatformDependent.isWindows() && !PlatformDependent.maybeSuperUser()) {
// Warn a user about the fact that a non-root user can't receive a
// broadcast packet on *nix if the socket is bound on non-wildcard address.
logger.warn(
"A non-root user can't receive a broadcast packet if the socket " +
"is not bound to a wildcard address; binding to a non-wildcard " +
"address (" + localAddress + ") anyway as requested.");
}
boolean wasActive = isActive();
try {
doBind(localAddress);
} catch (Throwable t) {
safeSetFailure(promise, t);
closeIfClosed();
return;
}
if (!wasActive && isActive()) {
invokeLater(new Runnable() {
@Override
public void run() {
pipeline.fireChannelActive();
}
});
}
safeSetSuccess(promise);
}
/**
* 客户端 或 服务端,主动关闭连接
*/
@Override
public final void disconnect(final ChannelPromise promise) {
assertEventLoop();
if (!promise.setUncancellable()) {
return;
}
boolean wasActive = isActive();
try {
doDisconnect();
} catch (Throwable t) {
safeSetFailure(promise, t);
closeIfClosed();
return;
}
if (wasActive && !isActive()) {
invokeLater(new Runnable() {
@Override
public void run() {
pipeline.fireChannelInactive();
}
});
}
safeSetSuccess(promise);
closeIfClosed(); // doDisconnect() might have closed the channel
}
/**
* 在链路关闭之前需要首先判断是否处于刷新状态,如果处于刷新状态说明还有消息尚
* 未发送出去需要等到所有消息发送完成再关闭链路因此将关闭操作封装成Runnable稍后再执行
*/
@Override
public final void close(final ChannelPromise promise) {
assertEventLoop();
close(promise, CLOSE_CLOSED_CHANNEL_EXCEPTION, CLOSE_CLOSED_CHANNEL_EXCEPTION, false);
}
/**
* 本方法实际上将消息添加到环形发送数组中并不是真正的写Channel
*/
@Override
public final void write(Object msg, ChannelPromise promise) {
assertEventLoop();
ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
if (outboundBuffer == null) {
// If the outboundBuffer is null we know the channel was closed and so
// need to fail the future right away. If it is not null the handling of the rest
// will be done in flush0()
// See https://github.com/netty/netty/issues/2362
safeSetFailure(promise, newWriteException(initialCloseCause));
// release message now to prevent resource-leak
ReferenceCountUtil.release(msg);
return;
}
int size;
try {
msg = filterOutboundMessage(msg);
size = pipeline.estimatorHandle().size(msg);
if (size < 0) {
size = 0;
}
} catch (Throwable t) {
safeSetFailure(promise, t);
ReferenceCountUtil.release(msg);
return;
}
outboundBuffer.addMessage(msg, size, promise);
}
/**
* 将缓冲区中待发送的消息全部写入 Channel并发送给通信对方
*/
@Override
public final void flush() {
assertEventLoop();
ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
if (outboundBuffer == null) {
return;
}
outboundBuffer.addFlush();
flush0();
}
@SuppressWarnings("deprecation")
protected void flush0() {
if (inFlush0) {
// Avoid re-entrance
return;
}
final ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
if (outboundBuffer == null || outboundBuffer.isEmpty()) {
return;
}
inFlush0 = true;
// Mark all pending write requests as failure if the channel is inactive.
if (!isActive()) {
try {
if (isOpen()) {
outboundBuffer.failFlushed(FLUSH0_NOT_YET_CONNECTED_EXCEPTION, true);
} else {
// Do not trigger channelWritabilityChanged because the channel is closed already.
outboundBuffer.failFlushed(newFlush0Exception(initialCloseCause), false);
}
} finally {
inFlush0 = false;
}
return;
}
try {
doWrite(outboundBuffer);
} catch (Throwable t) {
if (t instanceof IOException && config().isAutoClose()) {
/**
* Just call {@link #close(ChannelPromise, Throwable, boolean)} here which will take care of
* failing all flushed messages and also ensure the actual close of the underlying transport
* will happen before the promises are notified.
*
* This is needed as otherwise {@link #isActive()} , {@link #isOpen()} and {@link #isWritable()}
* may still return {@code true} even if the channel should be closed as result of the exception.
*/
initialCloseCause = t;
close(voidPromise(), t, newFlush0Exception(t), false);
} else {
try {
shutdownOutput(voidPromise(), t);
} catch (Throwable t2) {
initialCloseCause = t;
close(voidPromise(), t2, newFlush0Exception(t), false);
}
}
} finally {
inFlush0 = false;
}
}
}
}
```
#### AbstractNioUnsafe
AbstractNioUnsafe 是 AbstractUnsafe类 的 NIO实现它主要实现了 connect 、finishConnect 等方法。
```java
public abstract class AbstractNioChannel extends AbstractChannel {
/**
* 获取当前的连接状态进行缓存,然后发起连接操作。
*/
@Override
public final void connect(
final SocketAddress remoteAddress, final SocketAddress localAddress, final ChannelPromise promise) {
if (!promise.setUncancellable() || !ensureOpen(promise)) {
return;
}
try {
if (connectPromise != null) {
// Already a connect in process.
throw new ConnectionPendingException();
}
boolean wasActive = isActive();
if (doConnect(remoteAddress, localAddress)) {
fulfillConnectPromise(promise, wasActive);
} else {
connectPromise = promise;
requestedRemoteAddress = remoteAddress;
// Schedule connect timeout.
int connectTimeoutMillis = config().getConnectTimeoutMillis();
if (connectTimeoutMillis > 0) {
connectTimeoutFuture = eventLoop().schedule(new Runnable() {
@Override
public void run() {
ChannelPromise connectPromise = AbstractNioChannel.this.connectPromise;
ConnectTimeoutException cause =
new ConnectTimeoutException("connection timed out: " + remoteAddress);
if (connectPromise != null && connectPromise.tryFailure(cause)) {
close(voidPromise());
}
}
}, connectTimeoutMillis, TimeUnit.MILLISECONDS);
}
promise.addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
if (future.isCancelled()) {
if (connectTimeoutFuture != null) {
connectTimeoutFuture.cancel(false);
}
connectPromise = null;
close(voidPromise());
}
}
});
}
} catch (Throwable t) {
promise.tryFailure(annotateConnectException(t, remoteAddress));
closeIfClosed();
}
}
/**
* 对 TCP三次握手连接结果 进行判断
*/
@Override
public final void finishConnect() {
// Note this method is invoked by the event loop only if the connection attempt was
// neither cancelled nor timed out.
assert eventLoop().inEventLoop();
try {
boolean wasActive = isActive();
doFinishConnect();
fulfillConnectPromise(connectPromise, wasActive);
} catch (Throwable t) {
fulfillConnectPromise(connectPromise, annotateConnectException(t, requestedRemoteAddress));
} finally {
// Check for null as the connectTimeoutFuture is only created if a connectTimeoutMillis > 0 is used
// See https://github.com/netty/netty/issues/1770
if (connectTimeoutFuture != null) {
connectTimeoutFuture.cancel(false);
}
connectPromise = null;
}
}
}
}
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Loading…
Cancel
Save