|
|
|
@ -580,23 +580,20 @@ public final class QrCode {
|
|
|
|
|
// before masking. Due to the arithmetic of XOR, calling applyMask() with
|
|
|
|
|
// the same mask value a second time will undo the mask. A final well-formed
|
|
|
|
|
// QR Code needs exactly one (not zero, two, etc.) mask applied.
|
|
|
|
|
|
|
|
|
|
private void applyMask(int msk) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (msk < 0 || msk > 7)
|
|
|
|
|
throw new IllegalArgumentException("Mask value out of range");
|
|
|
|
|
for (int y = 0; y < size; y++) {
|
|
|
|
|
for (int x = 0; x < size; x++) {
|
|
|
|
|
boolean invert;
|
|
|
|
|
switch (msk) {
|
|
|
|
|
case 0: invert = (x + y) % 2 == 0; break;
|
|
|
|
|
case 1: invert = y % 2 == 0; break;
|
|
|
|
|
case 2: invert = x % 3 == 0; break;
|
|
|
|
|
case 3: invert = (x + y) % 3 == 0; break;
|
|
|
|
|
case 4: invert = (x / 3 + y / 2) % 2 == 0; break;
|
|
|
|
|
case 5: invert = x * y % 2 + x * y % 3 == 0; break;
|
|
|
|
|
case 6: invert = (x * y % 2 + x * y % 3) % 2 == 0; break;
|
|
|
|
|
case 7: invert = ((x + y) % 2 + x * y % 3) % 2 == 0; break;
|
|
|
|
|
default: throw new AssertionError();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Command mskCommand = MskCommandFactory.getCommand(msk);
|
|
|
|
|
Button button = new Button(mskCommand);
|
|
|
|
|
invert = button.pressed(y, x, msk);
|
|
|
|
|
|
|
|
|
|
modules[y][x] ^= invert & !isFunction[y][x];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -635,9 +632,31 @@ public final class QrCode {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
private int havingSameColor(int run, boolean runColor, int[] runHistory, int result, int y, int x) {
|
|
|
|
|
if (modules[y][x] == runColor) {
|
|
|
|
|
run++;
|
|
|
|
|
if (run == 5)
|
|
|
|
|
result += PENALTY_N1;
|
|
|
|
|
else if (run > 5)
|
|
|
|
|
result++;
|
|
|
|
|
} else {
|
|
|
|
|
finderPenaltyAddHistory(run, runHistory);
|
|
|
|
|
if (!runColor)
|
|
|
|
|
result += finderPenaltyCountPatterns(runHistory) * PENALTY_N3;
|
|
|
|
|
runColor = modules[y][x];
|
|
|
|
|
run = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Calculates and returns the penalty score based on state of this QR Code's current modules.
|
|
|
|
|
// This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
|
|
|
|
|
|
|
|
|
|
private int getPenaltyScore() {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int result = 0;
|
|
|
|
|
|
|
|
|
|
// Adjacent modules in row having same color, and finder-like patterns
|
|
|
|
@ -646,19 +665,7 @@ public final class QrCode {
|
|
|
|
|
int runX = 0;
|
|
|
|
|
int[] runHistory = new int[7];
|
|
|
|
|
for (int x = 0; x < size; x++) {
|
|
|
|
|
if (modules[y][x] == runColor) {
|
|
|
|
|
runX++;
|
|
|
|
|
if (runX == 5)
|
|
|
|
|
result += PENALTY_N1;
|
|
|
|
|
else if (runX > 5)
|
|
|
|
|
result++;
|
|
|
|
|
} else {
|
|
|
|
|
finderPenaltyAddHistory(runX, runHistory);
|
|
|
|
|
if (!runColor)
|
|
|
|
|
result += finderPenaltyCountPatterns(runHistory) * PENALTY_N3;
|
|
|
|
|
runColor = modules[y][x];
|
|
|
|
|
runX = 1;
|
|
|
|
|
}
|
|
|
|
|
result += havingSameColor(runX, runColor, runHistory, result, y, x);
|
|
|
|
|
}
|
|
|
|
|
result += finderPenaltyTerminateAndCount(runColor, runX, runHistory) * PENALTY_N3;
|
|
|
|
|
}
|
|
|
|
@ -668,33 +675,13 @@ public final class QrCode {
|
|
|
|
|
int runY = 0;
|
|
|
|
|
int[] runHistory = new int[7];
|
|
|
|
|
for (int y = 0; y < size; y++) {
|
|
|
|
|
if (modules[y][x] == runColor) {
|
|
|
|
|
runY++;
|
|
|
|
|
if (runY == 5)
|
|
|
|
|
result += PENALTY_N1;
|
|
|
|
|
else if (runY > 5)
|
|
|
|
|
result++;
|
|
|
|
|
} else {
|
|
|
|
|
finderPenaltyAddHistory(runY, runHistory);
|
|
|
|
|
if (!runColor)
|
|
|
|
|
result += finderPenaltyCountPatterns(runHistory) * PENALTY_N3;
|
|
|
|
|
runColor = modules[y][x];
|
|
|
|
|
runY = 1;
|
|
|
|
|
}
|
|
|
|
|
result += havingSameColor(runY, runColor, runHistory, result, y, x);
|
|
|
|
|
}
|
|
|
|
|
result += finderPenaltyTerminateAndCount(runColor, runY, runHistory) * PENALTY_N3;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 2*2 blocks of modules having same color
|
|
|
|
|
for (int y = 0; y < size - 1; y++) {
|
|
|
|
|
for (int x = 0; x < size - 1; x++) {
|
|
|
|
|
boolean color = modules[y][x];
|
|
|
|
|
if ( color == modules[y][x + 1] &&
|
|
|
|
|
color == modules[y + 1][x] &&
|
|
|
|
|
color == modules[y + 1][x + 1])
|
|
|
|
|
result += PENALTY_N2;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
result += twobytwoHavingSameColor(modules);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Balance of black and white modules
|
|
|
|
|
int black = 0;
|
|
|
|
@ -711,7 +698,20 @@ public final class QrCode {
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
private int twobytwoHavingSameColor(boolean[][] modules) {
|
|
|
|
|
int result = 0;
|
|
|
|
|
// 2*2 blocks of modules having same color.
|
|
|
|
|
for (int y = 0; y < size - 1; y++) {
|
|
|
|
|
for (int x = 0; x < size - 1; x++) {
|
|
|
|
|
boolean color = modules[y][x];
|
|
|
|
|
if ( color == modules[y][x + 1] &&
|
|
|
|
|
color == modules[y + 1][x] &&
|
|
|
|
|
color == modules[y + 1][x + 1])
|
|
|
|
|
result += PENALTY_N2;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*---- Private helper functions ----*/
|
|
|
|
|
|
|
|
|
@ -744,6 +744,13 @@ public final class QrCode {
|
|
|
|
|
if (ver < MIN_VERSION || ver > MAX_VERSION)
|
|
|
|
|
throw new IllegalArgumentException("Version number out of range");
|
|
|
|
|
|
|
|
|
|
int result = calculateNumOfModules(ver);
|
|
|
|
|
|
|
|
|
|
assert 208 <= result && result <= 29648;
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private static int calculateNumOfModules(int ver) {
|
|
|
|
|
int size = ver * 4 + 17;
|
|
|
|
|
int result = size * size; // Number of modules in the whole QR Code square
|
|
|
|
|
result -= 8 * 8 * 3; // Subtract the three finders with separators
|
|
|
|
@ -758,11 +765,9 @@ public final class QrCode {
|
|
|
|
|
if (ver >= 7)
|
|
|
|
|
result -= 6 * 3 * 2; // Subtract version information
|
|
|
|
|
}
|
|
|
|
|
assert 208 <= result && result <= 29648;
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be
|
|
|
|
|
// implemented as a lookup table over all possible parameter values, instead of as an algorithm.
|
|
|
|
|
private static byte[] reedSolomonComputeDivisor(int degree) {
|
|
|
|
|