|
|
@ -122,19 +122,19 @@ final class ReedSolomonGenerator {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public void getRemainder(byte[] data, int dataOff, int dataLen, byte[] result, int resultOff) {
|
|
|
|
public void getRemainder(byte[] data, int dataOff, int dataLen, byte[] result) {
|
|
|
|
Objects.requireNonNull(data);
|
|
|
|
Objects.requireNonNull(data);
|
|
|
|
Objects.requireNonNull(result);
|
|
|
|
Objects.requireNonNull(result);
|
|
|
|
|
|
|
|
int degree = polynomialMultiply[0].length;
|
|
|
|
|
|
|
|
assert result.length == degree;
|
|
|
|
|
|
|
|
|
|
|
|
// Compute the remainder by performing polynomial division
|
|
|
|
// Compute the remainder by performing polynomial division
|
|
|
|
int degree = polynomialMultiply[0].length;
|
|
|
|
Arrays.fill(result, (byte)0);
|
|
|
|
int resultEnd = resultOff + degree;
|
|
|
|
|
|
|
|
Arrays.fill(result, resultOff, resultEnd, (byte)0);
|
|
|
|
|
|
|
|
for (int i = dataOff, dataEnd = dataOff + dataLen; i < dataEnd; i++) {
|
|
|
|
for (int i = dataOff, dataEnd = dataOff + dataLen; i < dataEnd; i++) {
|
|
|
|
byte[] table = polynomialMultiply[(data[i] ^ result[resultOff]) & 0xFF];
|
|
|
|
byte[] table = polynomialMultiply[(data[i] ^ result[0]) & 0xFF];
|
|
|
|
for (int j = 0; j < degree - 1; j++)
|
|
|
|
for (int j = 0; j < degree - 1; j++)
|
|
|
|
result[resultOff + j] = (byte)(result[resultOff + j + 1] ^ table[j]);
|
|
|
|
result[j] = (byte)(result[j + 1] ^ table[j]);
|
|
|
|
result[resultOff + degree - 1] = table[degree - 1];
|
|
|
|
result[degree - 1] = table[degree - 1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|