Started this "Fast QR Code generator library" project, added Reed-Solomon ECC generator.

pull/134/head
Project Nayuki 7 years ago
commit 6be9684df4

@ -0,0 +1,141 @@
package io.nayuki.fastqrcodegen;
import java.lang.ref.SoftReference;
import java.util.Arrays;
import java.util.Objects;
final class ReedSolomonGenerator {
/*---- Factory members ----*/
public static ReedSolomonGenerator getInstance(int degree) {
if (degree < 1 || degree > MAX_DEGREE)
throw new IllegalArgumentException("Degree out of range");
while (true) {
synchronized(cache) {
SoftReference<ReedSolomonGenerator> ref = cache[degree];
if (ref != null) {
ReedSolomonGenerator result = ref.get();
if (result != null)
return result;
cache[degree] = null;
}
if (!isPending[degree]) {
isPending[degree] = true;
break;
}
try {
cache.wait();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
}
ReedSolomonGenerator rs = new ReedSolomonGenerator(degree);
synchronized(cache) {
cache[degree] = new SoftReference<>(rs);
isPending[degree] = false;
cache.notifyAll();
}
return rs;
}
private static final int MAX_DEGREE = 30;
@SuppressWarnings("unchecked")
private static final SoftReference<ReedSolomonGenerator>[] cache = new SoftReference[MAX_DEGREE + 1];
private static final boolean[] isPending = new boolean[MAX_DEGREE + 1];
/*---- Instance members ----*/
private byte[][] multiplies;
private ReedSolomonGenerator(int degree) {
if (degree < 1 || degree > 255)
throw new IllegalArgumentException("Degree out of range");
// Start with the monomial x^0
byte[] coefficients = new byte[degree];
coefficients[degree - 1] = 1;
// Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
// drop the highest term, and store the rest of the coefficients in order of descending powers.
// Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
int root = 1;
for (int i = 0; i < degree; i++) {
// Multiply the current product by (x - r^i)
for (int j = 0; j < coefficients.length; j++) {
coefficients[j] = (byte)multiply(coefficients[j] & 0xFF, root);
if (j + 1 < coefficients.length)
coefficients[j] ^= coefficients[j + 1];
}
root = multiply(root, 0x02);
}
multiplies = new byte[degree][];
for (int i = 0; i < multiplies.length; i++)
multiplies[i] = MULTIPLICATION_TABLE[coefficients[i] & 0xFF];
}
public void getRemainder(byte[] data, byte[] result) {
Objects.requireNonNull(data);
Objects.requireNonNull(result);
if (result.length != multiplies.length)
throw new IllegalArgumentException("Array length mismatch");
// Compute the remainder by performing polynomial division
Arrays.fill(result, (byte)0);
for (byte b : data) {
int factor = (b ^ result[0]) & 0xFF;
System.arraycopy(result, 1, result, 0, result.length - 1);
result[result.length - 1] = 0;
for (int i = 0; i < result.length; i++)
result[i] ^= multiplies[i][factor];
}
}
/*---- Constant members ----*/
// Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result
// are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8.
private static int multiply(int x, int y) {
if (x >>> 8 != 0 || y >>> 8 != 0)
throw new IllegalArgumentException("Byte out of range");
// Russian peasant multiplication
int z = 0;
for (int i = 7; i >= 0; i--) {
z = (z << 1) ^ ((z >>> 7) * 0x11D);
z ^= ((y >>> i) & 1) * x;
}
if (z >>> 8 != 0)
throw new AssertionError();
return z;
}
private static final byte[][] MULTIPLICATION_TABLE = new byte[256][256];
static {
for (int i = 0; i < MULTIPLICATION_TABLE.length; i++) {
for (int j = 0; j <= i; j++) {
byte k = (byte)multiply(i, j);
MULTIPLICATION_TABLE[i][j] = k;
MULTIPLICATION_TABLE[j][i] = k;
}
}
}
}
Loading…
Cancel
Save