commit 6be9684df4cf1561e062024b1de8123da6e8b7a3 Author: Project Nayuki Date: Thu Nov 23 03:06:55 2017 +0000 Started this "Fast QR Code generator library" project, added Reed-Solomon ECC generator. diff --git a/src/io/nayuki/fastqrcodegen/ReedSolomonGenerator.java b/src/io/nayuki/fastqrcodegen/ReedSolomonGenerator.java new file mode 100644 index 0000000..8be42e7 --- /dev/null +++ b/src/io/nayuki/fastqrcodegen/ReedSolomonGenerator.java @@ -0,0 +1,141 @@ +package io.nayuki.fastqrcodegen; + +import java.lang.ref.SoftReference; +import java.util.Arrays; +import java.util.Objects; + + +final class ReedSolomonGenerator { + + /*---- Factory members ----*/ + + public static ReedSolomonGenerator getInstance(int degree) { + if (degree < 1 || degree > MAX_DEGREE) + throw new IllegalArgumentException("Degree out of range"); + + while (true) { + synchronized(cache) { + SoftReference ref = cache[degree]; + if (ref != null) { + ReedSolomonGenerator result = ref.get(); + if (result != null) + return result; + cache[degree] = null; + } + + if (!isPending[degree]) { + isPending[degree] = true; + break; + } + + try { + cache.wait(); + } catch (InterruptedException e) { + throw new RuntimeException(e); + } + } + } + + ReedSolomonGenerator rs = new ReedSolomonGenerator(degree); + synchronized(cache) { + cache[degree] = new SoftReference<>(rs); + isPending[degree] = false; + cache.notifyAll(); + } + return rs; + } + + + private static final int MAX_DEGREE = 30; + + @SuppressWarnings("unchecked") + private static final SoftReference[] cache = new SoftReference[MAX_DEGREE + 1]; + + private static final boolean[] isPending = new boolean[MAX_DEGREE + 1]; + + + + /*---- Instance members ----*/ + + private byte[][] multiplies; + + + private ReedSolomonGenerator(int degree) { + if (degree < 1 || degree > 255) + throw new IllegalArgumentException("Degree out of range"); + + // Start with the monomial x^0 + byte[] coefficients = new byte[degree]; + coefficients[degree - 1] = 1; + + // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), + // drop the highest term, and store the rest of the coefficients in order of descending powers. + // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). + int root = 1; + for (int i = 0; i < degree; i++) { + // Multiply the current product by (x - r^i) + for (int j = 0; j < coefficients.length; j++) { + coefficients[j] = (byte)multiply(coefficients[j] & 0xFF, root); + if (j + 1 < coefficients.length) + coefficients[j] ^= coefficients[j + 1]; + } + root = multiply(root, 0x02); + } + + multiplies = new byte[degree][]; + for (int i = 0; i < multiplies.length; i++) + multiplies[i] = MULTIPLICATION_TABLE[coefficients[i] & 0xFF]; + } + + + public void getRemainder(byte[] data, byte[] result) { + Objects.requireNonNull(data); + Objects.requireNonNull(result); + if (result.length != multiplies.length) + throw new IllegalArgumentException("Array length mismatch"); + + // Compute the remainder by performing polynomial division + Arrays.fill(result, (byte)0); + for (byte b : data) { + int factor = (b ^ result[0]) & 0xFF; + System.arraycopy(result, 1, result, 0, result.length - 1); + result[result.length - 1] = 0; + for (int i = 0; i < result.length; i++) + result[i] ^= multiplies[i][factor]; + } + } + + + + /*---- Constant members ----*/ + + // Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result + // are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8. + private static int multiply(int x, int y) { + if (x >>> 8 != 0 || y >>> 8 != 0) + throw new IllegalArgumentException("Byte out of range"); + // Russian peasant multiplication + int z = 0; + for (int i = 7; i >= 0; i--) { + z = (z << 1) ^ ((z >>> 7) * 0x11D); + z ^= ((y >>> i) & 1) * x; + } + if (z >>> 8 != 0) + throw new AssertionError(); + return z; + } + + + private static final byte[][] MULTIPLICATION_TABLE = new byte[256][256]; + + static { + for (int i = 0; i < MULTIPLICATION_TABLE.length; i++) { + for (int j = 0; j <= i; j++) { + byte k = (byte)multiply(i, j); + MULTIPLICATION_TABLE[i][j] = k; + MULTIPLICATION_TABLE[j][i] = k; + } + } + } + +}