@ -1,4 +1,4 @@
/*
/*
* QR Code generator library ( Rust )
*
* Copyright ( c ) Project Nayuki . ( MIT License )
@ -24,51 +24,50 @@
/* ---- QrCode functionality ---- */
/*
* A QR Code symbol , which is a type of two - dimension barcode .
* Invented by Denso Wave and described in the ISO / IEC 18004 standard .
* Instances of this struct represent an immutable square grid of black and white cells .
* The impl provides static factory functions to create a QR Code from text or binary data .
* The struct and impl cover the QR Code Model 2 specification , supporting all versions
* ( sizes ) from 1 to 40 , all 4 error correction levels , and 4 character encoding modes .
*
* Ways to create a QR Code object :
* - High level : Take the payload data and call QrCode ::encode_text ( ) or QrCode ::encode_binary ( ) .
* - Mid level : Custom - make the list of segments and call
* QrCode . encode_segments ( ) or QrCode . encode_segments_advanced ( ) .
* - Low level : Custom - make the array of data codeword bytes ( including segment
* headers and final padding , excluding error correction codewords ) , supply the
* appropriate version number , and call the QrCode ::encode_codewords ( ) constructor .
* ( Note that all ways require supplying the desired error correction level . )
* /
/// A QR Code symbol, which is a type of two-dimension barcode.
/// Invented by Denso Wave and described in the ISO/IEC 18004 standard.
/// Instances of this struct represent an immutable square grid of black and white cells.
/// The impl provides static factory functions to create a QR Code from text or binary data.
/// The struct and impl cover the QR Code Model 2 specification, supporting all versions
/// (sizes) from 1 to 40, all 4 error correction levels, and 4 character encoding modes.
///
/// Ways to create a QR Code object:
/// - High level: Take the payload data and call QrCode::encode_text() or QrCode::encode_binary().
/// - Mid level: Custom-make the list of segments and call
/// QrCode.encode_segments() or QrCode.encode_segments_advanced().
/// - Low level: Custom-make the array of data codeword bytes (including segment
/// headers and final padding, excluding error correction codewords), supply the
/// appropriate version number, and call the QrCode::encode_codewords() constructor.
/// (Note that all ways require supplying the desired error correction level.)
#[ derive(Clone) ]
pub struct QrCode {
// Scalar parameters:
// The version number of this QR Code, which is between 1 and 40 (inclusive).
// This determines the size of this barcode.
/ // The version number of this QR Code, which is between 1 and 40 (inclusive).
/ // This determines the size of this barcode.
version : Version ,
// The width and height of this QR Code, measured in modules, between
// 21 and 177 (inclusive). This is equal to version * 4 + 17.
/ // The width and height of this QR Code, measured in modules, between
/ // 21 and 177 (inclusive). This is equal to version * 4 + 17.
size : i32 ,
// The error correction level used in this QR Code.
/ // The error correction level used in this QR Code.
errorcorrectionlevel : QrCodeEcc ,
// The index of the mask pattern used in this QR Code, which is between 0 and 7 (inclusive).
// Even if a QR Code is created with automatic masking requested (mask = None),
// the resulting object still has a mask value between 0 and 7.
/ // The index of the mask pattern used in this QR Code, which is between 0 and 7 (inclusive).
/ // Even if a QR Code is created with automatic masking requested (mask = None),
/ // the resulting object still has a mask value between 0 and 7.
mask : Mask ,
// Grids of modules/pixels, with dimensions of size*size:
// The modules of this QR Code (false = white, true = black).
// Immutable after constructor finishes. Accessed through get_module().
/ // Grids of modules/pixels, with dimensions of size*size:
///
/ // The modules of this QR Code (false = white, true = black).
/ // Immutable after constructor finishes. Accessed through get_module().
modules : Vec < bool > ,
// Indicates function modules that are not subjected to masking. Discarded when constructor finishes.
/ // Indicates function modules that are not subjected to masking. Discarded when constructor finishes.
isfunction : Vec < bool > ,
}
@ -78,12 +77,12 @@ impl QrCode {
/* ---- Static factory functions (high level) ---- */
// Returns a QR Code representing the given Unicode text string at the given error correction level.
// As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer Unicode
// code points (not UTF-8 code units) if the low error correction level is used. The smallest possible
// QR Code version is automatically chosen for the output. The ECC level of the result may be higher than
// the ecl argument if it can be done without increasing the version. Returns a wrapped QrCode if successful,
// or None if the data is too long to fit in any version at the given ECC level.
/ // Returns a QR Code representing the given Unicode text string at the given error correction level.
/ // As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer Unicode
/ // code points (not UTF-8 code units) if the low error correction level is used. The smallest possible
/ // QR Code version is automatically chosen for the output. The ECC level of the result may be higher than
/ // the ecl argument if it can be done without increasing the version. Returns a wrapped QrCode if successful,
/ // or None if the data is too long to fit in any version at the given ECC level.
pub fn encode_text ( text : & str , ecl : QrCodeEcc ) -> Option < Self > {
let chrs : Vec < char > = text . chars ( ) . collect ( ) ;
let segs : Vec < QrSegment > = QrSegment ::make_segments ( & chrs ) ;
@ -91,11 +90,11 @@ impl QrCode {
}
// Returns a QR Code representing the given binary data at the given error correction level.
// This function always encodes using the binary segment mode, not any text mode. The maximum number of
// bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output.
// The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version.
// Returns a wrapped QrCode if successful, or None if the data is too long to fit in any version at the given ECC level.
/ // Returns a QR Code representing the given binary data at the given error correction level.
/ // This function always encodes using the binary segment mode, not any text mode. The maximum number of
/ // bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output.
/ // The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version.
/ // Returns a wrapped QrCode if successful, or None if the data is too long to fit in any version at the given ECC level.
pub fn encode_binary ( data : & [ u8 ] , ecl : QrCodeEcc ) -> Option < Self > {
let segs : Vec < QrSegment > = vec! [ QrSegment ::make_bytes ( data ) ] ;
QrCode ::encode_segments ( & segs , ecl )
@ -104,29 +103,29 @@ impl QrCode {
/* ---- Static factory functions (mid level) ---- */
// Returns a QR Code representing the given segments at the given error correction level.
// The smallest possible QR Code version is automatically chosen for the output. The ECC level
// of the result may be higher than the ecl argument if it can be done without increasing the version.
// This function allows the user to create a custom sequence of segments that switches
// between modes (such as alphanumeric and byte) to encode text in less space.
// This is a mid-level API; the high-level API is encode_text() and encode_binary().
// Returns a wrapped QrCode if successful, or None if the data is too long to fit in any version at the given ECC level.
/ // Returns a QR Code representing the given segments at the given error correction level.
/ // The smallest possible QR Code version is automatically chosen for the output. The ECC level
/ // of the result may be higher than the ecl argument if it can be done without increasing the version.
/ // This function allows the user to create a custom sequence of segments that switches
/ // between modes (such as alphanumeric and byte) to encode text in less space.
/ // This is a mid-level API; the high-level API is encode_text() and encode_binary().
/ // Returns a wrapped QrCode if successful, or None if the data is too long to fit in any version at the given ECC level.
pub fn encode_segments ( segs : & [ QrSegment ] , ecl : QrCodeEcc ) -> Option < Self > {
QrCode ::encode_segments_advanced ( segs , ecl , QrCode_MIN_VERSION , QrCode_MAX_VERSION , None , true )
}
// Returns a QR Code representing the given segments with the given encoding parameters.
// The smallest possible QR Code version within the given range is automatically
// chosen for the output. Iff boostecl is true, then the ECC level of the result
// may be higher than the ecl argument if it can be done without increasing the
// version. The mask number is either between 0 to 7 (inclusive) to force that
// mask, or -1 to automatically choose an appropriate mask (which may be slow).
// This function allows the user to create a custom sequence of segments that switches
// between modes (such as alphanumeric and byte) to encode text in less space.
// This is a mid-level API; the high-level API is encodeText() and encodeBinary().
// Returns a wrapped QrCode if successful, or None if the data is too long to fit
// in any version in the given range at the given ECC level.
/ // Returns a QR Code representing the given segments with the given encoding parameters.
/ // The smallest possible QR Code version within the given range is automatically
/ // chosen for the output. Iff boostecl is true, then the ECC level of the result
/ // may be higher than the ecl argument if it can be done without increasing the
/ // version. The mask number is either between 0 to 7 (inclusive) to force that
/ // mask, or -1 to automatically choose an appropriate mask (which may be slow).
/ // This function allows the user to create a custom sequence of segments that switches
/ // between modes (such as alphanumeric and byte) to encode text in less space.
/ // This is a mid-level API; the high-level API is encodeText() and encodeBinary().
/ // Returns a wrapped QrCode if successful, or None if the data is too long to fit
/ // in any version in the given range at the given ECC level.
pub fn encode_segments_advanced ( segs : & [ QrSegment ] , mut ecl : QrCodeEcc ,
minversion : Version , maxversion : Version , mask : Option < Mask > , boostecl : bool ) -> Option < Self > {
assert! ( minversion . value ( ) < = maxversion . value ( ) , "Invalid value" ) ;
@ -195,10 +194,10 @@ impl QrCode {
/* ---- Constructor (low level) ---- */
// Creates a new QR Code with the given version number,
// error correction level, data codeword bytes, and mask number.
// This is a low-level API that most users should not use directly.
// A mid-level API is the encode_segments() function.
/ // Creates a new QR Code with the given version number,
/ // error correction level, data codeword bytes, and mask number.
/ // This is a low-level API that most users should not use directly.
/ // A mid-level API is the encode_segments() function.
pub fn encode_codewords ( ver : Version , ecl : QrCodeEcc , datacodewords : & [ u8 ] , mask : Option < Mask > ) -> Self {
// Initialize fields
let size : usize = ( ver . value ( ) as usize ) * 4 + 17 ;
@ -224,52 +223,52 @@ impl QrCode {
/* ---- Public methods ---- */
// Returns this QR Code's version, in the range [1, 40].
/ // Returns this QR Code's version, in the range [1, 40].
pub fn version ( & self ) -> Version {
self . version
}
// Returns this QR Code's size, in the range [21, 177].
/ // Returns this QR Code's size, in the range [21, 177].
pub fn size ( & self ) -> i32 {
self . size
}
// Returns this QR Code's error correction level.
/ // Returns this QR Code's error correction level.
pub fn error_correction_level ( & self ) -> QrCodeEcc {
self . errorcorrectionlevel
}
// Returns this QR Code's mask, in the range [0, 7].
/ // Returns this QR Code's mask, in the range [0, 7].
pub fn mask ( & self ) -> Mask {
self . mask
}
// Returns the color of the module (pixel) at the given coordinates, which is false
// for white or true for black. The top left corner has the coordinates (x=0, y=0).
// If the given coordinates are out of bounds, then false (white) is returned.
/ // Returns the color of the module (pixel) at the given coordinates, which is false
/ // for white or true for black. The top left corner has the coordinates (x=0, y=0).
/ // If the given coordinates are out of bounds, then false (white) is returned.
pub fn get_module ( & self , x : i32 , y : i32 ) -> bool {
0 < = x & & x < self . size & & 0 < = y & & y < self . size & & self . module ( x , y )
}
// Returns the color of the module at the given coordinates, which must be in bounds.
/ // Returns the color of the module at the given coordinates, which must be in bounds.
fn module ( & self , x : i32 , y : i32 ) -> bool {
self . modules [ ( y * self . size + x ) as usize ]
}
// Returns a mutable reference to the module's color at the given coordinates, which must be in bounds.
/ // Returns a mutable reference to the module's color at the given coordinates, which must be in bounds.
fn module_mut ( & mut self , x : i32 , y : i32 ) -> & mut bool {
& mut self . modules [ ( y * self . size + x ) as usize ]
}
// Returns a string of SVG code for an image depicting this QR Code, with the given number
// of border modules. The string always uses Unix newlines (\n), regardless of the platform.
/ // Returns a string of SVG code for an image depicting this QR Code, with the given number
/ // of border modules. The string always uses Unix newlines (\n), regardless of the platform.
pub fn to_svg_string ( & self , border : i32 ) -> String {
assert! ( border > = 0 , "Border must be non-negative" ) ;
let mut result = String ::new ( ) ;
@ -298,7 +297,7 @@ impl QrCode {
/* ---- Private helper methods for constructor: Drawing function modules ---- */
// Reads this object's version field, and draws and marks all function modules.
/ // Reads this object's version field, and draws and marks all function modules.
fn draw_function_patterns ( & mut self ) {
// Draw horizontal and vertical timing patterns
let size : i32 = self . size ;
@ -330,8 +329,8 @@ impl QrCode {
}
// Draws two copies of the format bits (with its own error correction code)
// based on the given mask and this object's error correction level field.
/ // Draws two copies of the format bits (with its own error correction code)
/ // based on the given mask and this object's error correction level field.
fn draw_format_bits ( & mut self , mask : Mask ) {
// Calculate error correction code and pack bits
let size : i32 = self . size ;
@ -366,8 +365,8 @@ impl QrCode {
}
// Draws two copies of the version bits (with its own error correction code),
// based on this object's version field, iff 7 <= version <= 40.
/ // Draws two copies of the version bits (with its own error correction code),
/ // based on this object's version field, iff 7 <= version <= 40.
fn draw_version ( & mut self ) {
if self . version . value ( ) < 7 {
return ;
@ -392,8 +391,8 @@ impl QrCode {
}
// Draws a 9*9 finder pattern including the border separator,
// with the center module at (x, y). Modules can be out of bounds.
/ // Draws a 9*9 finder pattern including the border separator,
/ // with the center module at (x, y). Modules can be out of bounds.
fn draw_finder_pattern ( & mut self , x : i32 , y : i32 ) {
for dy in - 4 .. 5 {
for dx in - 4 .. 5 {
@ -408,8 +407,8 @@ impl QrCode {
}
// Draws a 5*5 alignment pattern, with the center module
// at (x, y). All modules must be in bounds.
/ // Draws a 5*5 alignment pattern, with the center module
/ // at (x, y). All modules must be in bounds.
fn draw_alignment_pattern ( & mut self , x : i32 , y : i32 ) {
for dy in - 2 .. 3 {
for dx in - 2 .. 3 {
@ -419,8 +418,8 @@ impl QrCode {
}
// Sets the color of a module and marks it as a function module.
// Only used by the constructor. Coordinates must be in bounds.
/ // Sets the color of a module and marks it as a function module.
/ // Only used by the constructor. Coordinates must be in bounds.
fn set_function_module ( & mut self , x : i32 , y : i32 , isblack : bool ) {
* self . module_mut ( x , y ) = isblack ;
self . isfunction [ ( y * self . size + x ) as usize ] = true ;
@ -429,8 +428,8 @@ impl QrCode {
/* ---- Private helper methods for constructor: Codewords and masking ---- */
// Returns a new byte string representing the given data with the appropriate error correction
// codewords appended to it, based on this object's version and error correction level.
/ // Returns a new byte string representing the given data with the appropriate error correction
/ // codewords appended to it, based on this object's version and error correction level.
fn add_ecc_and_interleave ( & self , data : & [ u8 ] ) -> Vec < u8 > {
let ver = self . version ;
let ecl = self . errorcorrectionlevel ;
@ -472,8 +471,8 @@ impl QrCode {
}
// Draws the given sequence of 8-bit codewords (data and error correction) onto the entire
// data area of this QR Code. Function modules need to be marked off before this is called.
/ // Draws the given sequence of 8-bit codewords (data and error correction) onto the entire
/ // data area of this QR Code. Function modules need to be marked off before this is called.
fn draw_codewords ( & mut self , data : & [ u8 ] ) {
assert_eq! ( data . len ( ) , QrCode ::get_num_raw_data_modules ( self . version ) / 8 , "Illegal argument" ) ;
@ -503,11 +502,11 @@ impl QrCode {
}
// XORs the codeword modules in this QR Code with the given mask pattern.
// The function modules must be marked and the codeword bits must be drawn
// before masking. Due to the arithmetic of XOR, calling applyMask() with
// the same mask value a second time will undo the mask. A final well-formed
// QR Code needs exactly one (not zero, two, etc.) mask applied.
/ // XORs the codeword modules in this QR Code with the given mask pattern.
/ // The function modules must be marked and the codeword bits must be drawn
/ // before masking. Due to the arithmetic of XOR, calling applyMask() with
/ // the same mask value a second time will undo the mask. A final well-formed
/ // QR Code needs exactly one (not zero, two, etc.) mask applied.
fn apply_mask ( & mut self , mask : Mask ) {
let mask : u8 = mask . value ( ) ;
for y in 0 .. self . size {
@ -529,9 +528,9 @@ impl QrCode {
}
// A messy helper function for the constructors. This QR Code must be in an unmasked state when this
// method is called. The given argument is the requested mask, which is -1 for auto or 0 to 7 for fixed.
// This method applies and returns the actual mask chosen, from 0 to 7.
/ // A messy helper function for the constructors. This QR Code must be in an unmasked state when this
/ // method is called. The given argument is the requested mask, which is -1 for auto or 0 to 7 for fixed.
/ // This method applies and returns the actual mask chosen, from 0 to 7.
fn handle_constructor_masking ( & mut self , mut mask : Option < Mask > ) {
if mask . is_none ( ) { // Automatically choose best mask
let mut minpenalty : i32 = std ::i32 ::MAX ;
@ -554,8 +553,8 @@ impl QrCode {
}
// Calculates and returns the penalty score based on state of this QR Code's current modules.
// This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
/ // Calculates and returns the penalty score based on state of this QR Code's current modules.
/ // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
fn get_penalty_score ( & self ) -> i32 {
let mut result : i32 = 0 ;
let size : i32 = self . size ;
@ -645,9 +644,9 @@ impl QrCode {
/* ---- Private helper functions ---- */
// Returns an ascending list of positions of alignment patterns for this version number.
// Each position is in the range [0,177), and are used on both the x and y axes.
// This could be implemented as lookup table of 40 variable-length lists of unsigned bytes.
/ // Returns an ascending list of positions of alignment patterns for this version number.
/ // Each position is in the range [0,177), and are used on both the x and y axes.
/ // This could be implemented as lookup table of 40 variable-length lists of unsigned bytes.
fn get_alignment_pattern_positions ( & self ) -> Vec < i32 > {
let ver = self . version . value ( ) ;
if ver = = 1 {
@ -665,9 +664,9 @@ impl QrCode {
}
// Returns the number of data bits that can be stored in a QR Code of the given version number, after
// all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
// The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
/ // Returns the number of data bits that can be stored in a QR Code of the given version number, after
/ // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
/ // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
fn get_num_raw_data_modules ( ver : Version ) -> usize {
let ver = ver . value ( ) as usize ;
let mut result : usize = ( 16 * ver + 128 ) * ver + 64 ;
@ -682,9 +681,9 @@ impl QrCode {
}
// Returns the number of 8-bit data (i.e. not error correction) codewords contained in any
// QR Code of the given version number and error correction level, with remainder bits discarded.
// This stateless pure function could be implemented as a (40*4)-cell lookup table.
/ // Returns the number of 8-bit data (i.e. not error correction) codewords contained in any
/ // QR Code of the given version number and error correction level, with remainder bits discarded.
/ // This stateless pure function could be implemented as a (40*4)-cell lookup table.
fn get_num_data_codewords ( ver : Version , ecl : QrCodeEcc ) -> usize {
QrCode ::get_num_raw_data_modules ( ver ) / 8
- QrCode ::table_get ( & ECC_CODEWORDS_PER_BLOCK , ver , ecl )
@ -692,7 +691,7 @@ impl QrCode {
}
// Returns an entry from the given table based on the given values.
/ // Returns an entry from the given table based on the given values.
fn table_get ( table : & ' static [ [ i8 ; 41 ] ; 4 ] , ver : Version , ecl : QrCodeEcc ) -> usize {
table [ ecl . ordinal ( ) ] [ ver . value ( ) as usize ] as usize
}
@ -702,10 +701,12 @@ impl QrCode {
/* ---- Cconstants and tables ---- */
// The minimum version number supported in the QR Code Model 2 standard.
/// The minimum version number supported in the QR Code Model 2 standard.
#[ allow(non_upper_case_globals) ]
pub const QrCode_MIN_VERSION : Version = Version ( 1 ) ;
// The maximum version number supported in the QR Code Model 2 standard.
/// The maximum version number supported in the QR Code Model 2 standard.
#[ allow(non_upper_case_globals) ]
pub const QrCode_MAX_VERSION : Version = Version ( 40 ) ;
@ -738,19 +739,23 @@ static NUM_ERROR_CORRECTION_BLOCKS: [[i8; 41]; 4] = [
/* ---- QrCodeEcc functionality ---- */
// The error correction level in a QR Code symbol.
/ // The error correction level in a QR Code symbol.
#[ derive(Clone, Copy) ]
pub enum QrCodeEcc {
Low , // The QR Code can tolerate about 7% erroneous codewords
Medium , // The QR Code can tolerate about 15% erroneous codewords
Quartile , // The QR Code can tolerate about 25% erroneous codewords
High , // The QR Code can tolerate about 30% erroneous codewords
/// The QR Code can tolerate about 7% erroneous codewords
Low ,
/// The QR Code can tolerate about 15% erroneous codewords
Medium ,
/// The QR Code can tolerate about 25% erroneous codewords
Quartile ,
/// The QR Code can tolerate about 30% erroneous codewords
High ,
}
impl QrCodeEcc {
// Returns an unsigned 2-bit integer (in the range 0 to 3).
/ // Returns an unsigned 2-bit integer (in the range 0 to 3).
fn ordinal ( & self ) -> usize {
use QrCodeEcc ::* ;
match * self {
@ -762,7 +767,7 @@ impl QrCodeEcc {
}
// Returns an unsigned 2-bit integer (in the range 0 to 3).
/ // Returns an unsigned 2-bit integer (in the range 0 to 3).
fn format_bits ( & self ) -> u32 {
use QrCodeEcc ::* ;
match * self {
@ -779,13 +784,13 @@ impl QrCodeEcc {
/* ---- ReedSolomonGenerator functionality ---- */
// Computes the Reed-Solomon error correction codewords for a sequence of data codewords
// at a given degree. Objects are immutable, and the state only depends on the degree.
// This struct and impl exist because each data block in a QR Code shares the same the divisor polynomial.
/ // Computes the Reed-Solomon error correction codewords for a sequence of data codewords
/ // at a given degree. Objects are immutable, and the state only depends on the degree.
/ // This struct and impl exist because each data block in a QR Code shares the same the divisor polynomial.
struct ReedSolomonGenerator {
// Coefficients of the divisor polynomial, stored from highest to lowest power, excluding the leading term which
// is always 1. For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}.
/ // Coefficients of the divisor polynomial, stored from highest to lowest power, excluding the leading term which
/ // is always 1. For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}.
coefficients : Vec < u8 > ,
}
@ -793,8 +798,8 @@ struct ReedSolomonGenerator {
impl ReedSolomonGenerator {
// Creates a Reed-Solomon ECC generator for the given degree. This could be implemented
// as a lookup table over all possible parameter values, instead of as an algorithm.
/ // Creates a Reed-Solomon ECC generator for the given degree. This could be implemented
/ // as a lookup table over all possible parameter values, instead of as an algorithm.
fn new ( degree : usize ) -> Self {
assert! ( 1 < = degree & & degree < = 255 , "Degree out of range" ) ;
// Start with the monomial x^0
@ -819,7 +824,7 @@ impl ReedSolomonGenerator {
}
// Computes and returns the Reed-Solomon error correction codewords for the given sequence of data codewords.
/ // Computes and returns the Reed-Solomon error correction codewords for the given sequence of data codewords.
fn get_remainder ( & self , data : & [ u8 ] ) -> Vec < u8 > {
// Compute the remainder by performing polynomial division
let mut result = vec! [ 0 u8 ; self . coefficients . len ( ) ] ;
@ -834,8 +839,8 @@ impl ReedSolomonGenerator {
}
// Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result
// are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8.
/ // Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result
/ // are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8.
fn multiply ( x : u8 , y : u8 ) -> u8 {
// Russian peasant multiplication
let mut z : u8 = 0 ;
@ -852,29 +857,28 @@ impl ReedSolomonGenerator {
/* ---- QrSegment functionality ---- */
/*
* A segment of character / binary / control data in a QR Code symbol .
* Instances of this struct are immutable .
* The mid - level way to create a segment is to take the payload data
* and call a static factory function such as QrSegment ::make_numeric ( ) .
* The low - level way to create a segment is to custom - make the bit buffer
* and call the QrSegment ::new ( ) constructor with appropriate values .
* This segment struct imposes no length restrictions , but QR Codes have restrictions .
* Even in the most favorable conditions , a QR Code can only hold 7089 characters of data .
* Any segment longer than this is meaningless for the purpose of generating QR Codes .
* /
/// A segment of character/binary/control data in a QR Code symbol.
/// Instances of this struct are immutable.
/// The mid-level way to create a segment is to take the payload data
/// and call a static factory function such as QrSegment::make_numeric().
/// The low-level way to create a segment is to custom-make the bit buffer
/// and call the QrSegment::new() constructor with appropriate values.
/// This segment struct imposes no length restrictions, but QR Codes have restrictions.
/// Even in the most favorable conditions, a QR Code can only hold 7089 characters of data.
/// Any segment longer than this is meaningless for the purpose of generating QR Codes.
#[ derive(Clone) ]
pub struct QrSegment {
// The mode indicator of this segment. Accessed through mode().
/ // The mode indicator of this segment. Accessed through mode().
mode : QrSegmentMode ,
// The length of this segment's unencoded data. Measured in characters for
// numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode.
// Not the same as the data's bit length. Accessed through num_chars().
/ // The length of this segment's unencoded data. Measured in characters for
/ // numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode.
/ // Not the same as the data's bit length. Accessed through num_chars().
numchars : usize ,
// The data bits of this segment. Accessed through data().
/ // The data bits of this segment. Accessed through data().
data : Vec < bool > ,
}
@ -884,9 +888,9 @@ impl QrSegment {
/* ---- Static factory functions (mid level) ---- */
// Returns a segment representing the given binary data encoded in
// byte mode. All input byte slices are acceptable. Any text string
// can be converted to UTF-8 bytes and encoded as a byte mode segment.
/ // Returns a segment representing the given binary data encoded in
/ // byte mode. All input byte slices are acceptable. Any text string
/ // can be converted to UTF-8 bytes and encoded as a byte mode segment.
pub fn make_bytes ( data : & [ u8 ] ) -> Self {
let mut bb = BitBuffer ( Vec ::with_capacity ( data . len ( ) * 8 ) ) ;
for b in data {
@ -896,8 +900,8 @@ impl QrSegment {
}
// Returns a segment representing the given string of decimal digits encoded in numeric mode.
// Panics if the string contains non-digit characters.
/ // Returns a segment representing the given string of decimal digits encoded in numeric mode.
/ // Panics if the string contains non-digit characters.
pub fn make_numeric ( text : & [ char ] ) -> Self {
let mut bb = BitBuffer ( Vec ::with_capacity ( text . len ( ) * 3 + ( text . len ( ) + 2 ) / 3 ) ) ;
let mut accumdata : u32 = 0 ;
@ -919,9 +923,9 @@ impl QrSegment {
}
// Returns a segment representing the given text string encoded in alphanumeric mode.
// The characters allowed are: 0 to 9, A to Z (uppercase only), space, dollar, percent, asterisk,
// plus, hyphen, period, slash, colon. Panics if the string contains non-encodable characters.
/ // Returns a segment representing the given text string encoded in alphanumeric mode.
/ // The characters allowed are: 0 to 9, A to Z (uppercase only), space, dollar, percent, asterisk,
/ // plus, hyphen, period, slash, colon. Panics if the string contains non-encodable characters.
pub fn make_alphanumeric ( text : & [ char ] ) -> Self {
let mut bb = BitBuffer ( Vec ::with_capacity ( text . len ( ) * 5 + ( text . len ( ) + 1 ) / 2 ) ) ;
let mut accumdata : u32 = 0 ;
@ -944,8 +948,8 @@ impl QrSegment {
}
// Returns a list of zero or more segments to represent the given Unicode text string. The result
// may use various segment modes and switch modes to optimize the length of the bit stream.
/ // Returns a list of zero or more segments to represent the given Unicode text string. The result
/ // may use various segment modes and switch modes to optimize the length of the bit stream.
pub fn make_segments ( text : & [ char ] ) -> Vec < Self > {
if text . is_empty ( ) {
vec! [ ]
@ -960,8 +964,8 @@ impl QrSegment {
}
// Returns a segment representing an Extended Channel Interpretation
// (ECI) designator with the given assignment value.
/ // Returns a segment representing an Extended Channel Interpretation
/ // (ECI) designator with the given assignment value.
pub fn make_eci ( assignval : u32 ) -> Self {
let mut bb = BitBuffer ( Vec ::with_capacity ( 24 ) ) ;
if assignval < ( 1 < < 7 ) {
@ -979,11 +983,11 @@ impl QrSegment {
}
/* ---- Constructor (low level) ---- */
// Creates a new QR Code segment with the given attributes and data.
// The character count (numchars) must agree with the mode and
// the bit buffer length, but the constraint isn't checked.
/// Constructor (low level)
///
/ // Creates a new QR Code segment with the given attributes and data.
/ // The character count (numchars) must agree with the mode and
/ // the bit buffer length, but the constraint isn't checked.
pub fn new ( mode : QrSegmentMode , numchars : usize , data : Vec < bool > ) -> Self {
Self {
mode : mode ,
@ -995,19 +999,19 @@ impl QrSegment {
/* ---- Instance field getters ---- */
// Returns the mode indicator of this segment.
/ // Returns the mode indicator of this segment.
pub fn mode ( & self ) -> QrSegmentMode {
self . mode
}
// Returns the character count field of this segment.
/ // Returns the character count field of this segment.
pub fn num_chars ( & self ) -> usize {
self . numchars
}
// Returns the data bits of this segment.
/ // Returns the data bits of this segment.
pub fn data ( & self ) -> & Vec < bool > {
& self . data
}
@ -1015,9 +1019,9 @@ impl QrSegment {
/* ---- Other static functions ---- */
// Calculates and returns the number of bits needed to encode the given
// segments at the given version. The result is None if a segment has too many
// characters to fit its length field, or the total bits exceeds usize::MAX.
/ // Calculates and returns the number of bits needed to encode the given
/ // segments at the given version. The result is None if a segment has too many
/ // characters to fit its length field, or the total bits exceeds usize::MAX.
fn get_total_bits ( segs : & [ Self ] , version : Version ) -> Option < usize > {
let mut result : usize = 0 ;
for seg in segs {
@ -1034,16 +1038,16 @@ impl QrSegment {
}
// Tests whether the given string can be encoded as a segment in alphanumeric mode.
// A string is encodable iff each character is in the following set: 0 to 9, A to Z
// (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon.
/ // Tests whether the given string can be encoded as a segment in alphanumeric mode.
/ // A string is encodable iff each character is in the following set: 0 to 9, A to Z
/ // (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon.
fn is_alphanumeric ( text : & [ char ] ) -> bool {
text . iter ( ) . all ( | c | ALPHANUMERIC_CHARSET . contains ( c ) )
}
// Tests whether the given string can be encoded as a segment in numeric mode.
// A string is encodable iff each character is in the range 0 to 9.
/ // Tests whether the given string can be encoded as a segment in numeric mode.
/ // A string is encodable iff each character is in the range 0 to 9.
fn is_numeric ( text : & [ char ] ) -> bool {
text . iter ( ) . all ( | c | '0' < = * c & & * c < = '9' )
}
@ -1051,8 +1055,8 @@ impl QrSegment {
}
// The set of all legal characters in alphanumeric mode,
// where each character value maps to the index in the string.
/ // The set of all legal characters in alphanumeric mode,
/ // where each character value maps to the index in the string.
static ALPHANUMERIC_CHARSET : [ char ; 45 ] = [ '0' , '1' , '2' , '3' , '4' , '5' , '6' , '7' , '8' , '9' ,
'A' , 'B' , 'C' , 'D' , 'E' , 'F' , 'G' , 'H' , 'I' , 'J' , 'K' , 'L' , 'M' , 'N' , 'O' , 'P' , 'Q' , 'R' , 'S' , 'T' , 'U' , 'V' , 'W' , 'X' , 'Y' , 'Z' ,
' ' , '$' , '%' , '*' , '+' , '-' , '.' , '/' , ':' ] ;
@ -1061,7 +1065,7 @@ static ALPHANUMERIC_CHARSET: [char; 45] = ['0','1','2','3','4','5','6','7','8','
/* ---- QrSegmentMode functionality ---- */
// Describes how a segment's data bits are interpreted.
/ // Describes how a segment's data bits are interpreted.
#[ derive(Clone, Copy) ]
pub enum QrSegmentMode {
Numeric ,
@ -1074,8 +1078,8 @@ pub enum QrSegmentMode {
impl QrSegmentMode {
// Returns an unsigned 4-bit integer value (range 0 to 15)
// representing the mode indicator bits for this mode object.
/ // Returns an unsigned 4-bit integer value (range 0 to 15)
/ // representing the mode indicator bits for this mode object.
fn mode_bits ( & self ) -> u32 {
use QrSegmentMode ::* ;
match * self {
@ -1088,8 +1092,8 @@ impl QrSegmentMode {
}
// Returns the bit width of the character count field for a segment in this mode
// in a QR Code at the given version number. The result is in the range [0, 16].
/ // Returns the bit width of the character count field for a segment in this mode
/ // in a QR Code at the given version number. The result is in the range [0, 16].
pub fn num_char_count_bits ( & self , ver : Version ) -> u8 {
use QrSegmentMode ::* ;
( match * self {
@ -1107,13 +1111,13 @@ impl QrSegmentMode {
/* ---- Bit buffer functionality ---- */
// An appendable sequence of bits (0s and 1s). Mainly used by QrSegment.
/ // An appendable sequence of bits (0s and 1s). Mainly used by QrSegment.
pub struct BitBuffer ( pub Vec < bool > ) ;
impl BitBuffer {
// Appends the given number of low-order bits of the given value
// to this buffer. Requires len <= 31 and val < 2^len.
/ // Appends the given number of low-order bits of the given value
/ // to this buffer. Requires len <= 31 and val < 2^len.
pub fn append_bits ( & mut self , val : u32 , len : u8 ) {
assert! ( len < = 31 & & ( val > > len ) = = 0 , "Value out of range" ) ;
self . 0. extend ( ( 0 .. len as i32 ) . rev ( ) . map ( | i | get_bit ( val , i ) ) ) ; // Append bit by bit
@ -1154,7 +1158,7 @@ impl Mask {
}
// Returns true iff the i'th bit of x is set to 1.
/ // Returns true iff the i'th bit of x is set to 1.
fn get_bit ( x : u32 , i : i32 ) -> bool {
( x > > i ) & 1 ! = 0
}