Tweaked code to convert most explicit assertion checks to native assert statements.

pull/134/head
Project Nayuki 6 years ago
parent 887b6255ed
commit 0e5e3c1b61

@ -70,8 +70,7 @@ public final class QrCode {
if (version >= maxVersion) // All versions in the range could not fit the given data
throw new IllegalArgumentException("Data too long");
}
if (dataUsedBits == -1)
throw new AssertionError();
assert dataUsedBits != -1;
// Increase the error correction level while the data still fits in the current version number
for (Ecc newEcl : Ecc.values()) {
@ -95,8 +94,7 @@ public final class QrCode {
// Pad with alternate bytes until data capacity is reached
for (int padByte = 0xEC; bb.bitLength < dataCapacityBits; padByte ^= 0xEC ^ 0x11)
bb.appendBits(padByte, 8);
if (bb.bitLength % 8 != 0)
throw new AssertionError();
assert bb.bitLength % 8 == 0;
// Create the QR Code symbol
return new QrCode(version, ecl, bb.getBytes(), mask);
@ -245,8 +243,7 @@ public final class QrCode {
rem = (rem << 1) ^ ((rem >>> 9) * 0x537);
data = data << 10 | rem;
data ^= 0x5412; // uint15
if (data >>> 15 != 0)
throw new AssertionError();
assert data >>> 15 == 0;
// Draw first copy
for (int i = 0; i <= 5; i++)
@ -363,8 +360,7 @@ public final class QrCode {
applyMask(masks[i]); // Undoes the mask due to XOR
}
}
if (mask < 0 || mask > 7)
throw new AssertionError();
assert 0 <= mask && mask <= 7;
drawFormatBits(mask); // Overwrite old format bits
applyMask(masks[mask]); // Apply the final choice of mask
return mask; // The caller shall assign this value to the final-declared field

@ -169,8 +169,7 @@ final class QrTemplate {
for (int i = 0; i < 12; i++)
rem = (rem << 1) ^ ((rem >>> 11) * 0x1F25);
int data = version << 12 | rem; // uint18
if (data >>> 18 != 0)
throw new AssertionError();
assert data >>> 18 == 0;
// Draw two copies
for (int i = 0; i < 18; i++) {
@ -249,8 +248,7 @@ final class QrTemplate {
}
}
}
if (i != result.length)
throw new AssertionError();
assert i == result.length;
return result;
}

@ -140,16 +140,14 @@ final class ReedSolomonGenerator {
// Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result
// are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8.
private static int multiply(int x, int y) {
if (x >>> 8 != 0 || y >>> 8 != 0)
throw new IllegalArgumentException("Byte out of range");
assert x >>> 8 == 0 && y >>> 8 == 0;
// Russian peasant multiplication
int z = 0;
for (int i = 7; i >= 0; i--) {
z = (z << 1) ^ ((z >>> 7) * 0x11D);
z ^= ((y >>> i) & 1) * x;
}
if (z >>> 8 != 0)
throw new AssertionError();
assert z >>> 8 == 0;
return z;
}

Loading…
Cancel
Save