You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/demos/speaker_verification/README.md

222 lines
11 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

([简体中文](./README_cn.md)|English)
# Speech Verification)
## Introduction
Speaker Verification, refers to the problem of getting a speaker embedding from an audio.
This demo is an implementation to extract speaker embedding from a specific audio file. It can be done by a single command or a few lines in python using `PaddleSpeech`.
## Usage
### 1. Installation
see [installation](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install.md).
You can choose one way from easy, meduim and hard to install paddlespeech.
### 2. Prepare Input File
The input of this demo should be a WAV file(`.wav`), and the sample rate must be the same as the model.
Here are sample files for this demo that can be downloaded:
```bash
wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
```
### 3. Usage
- Command Line(Recommended)
```bash
paddlespeech vector --task spk --input 85236145389.wav
echo -e "demo1 85236145389.wav" > vec.job
paddlespeech vector --task spk --input vec.job
echo -e "demo2 85236145389.wav \n demo3 85236145389.wav" | paddlespeech vector --task spk
paddlespeech vector --task score --input "./85236145389.wav ./123456789.wav"
echo -e "demo4 85236145389.wav 85236145389.wav \n demo5 85236145389.wav 123456789.wav" > vec.job
paddlespeech vector --task score --input vec.job
```
Usage:
```bash
paddlespeech vector --help
```
Arguments:
- `input`(required): Audio file to recognize.
- `task` (required): Specify `vector` task. Default `spk`
- `model`: Model type of vector task. Default: `ecapatdnn_voxceleb12`.
- `sample_rate`: Sample rate of the model. Default: `16000`.
- `config`: Config of vector task. Use pretrained model when it is None. Default: `None`.
- `ckpt_path`: Model checkpoint. Use pretrained model when it is None. Default: `None`.
- `device`: Choose device to execute model inference. Default: default device of paddlepaddle in current environment.
Output:
```bash
demo [ 1.4217498 5.626253 -5.342073 1.1773866 3.308055
1.756596 5.167894 10.80636 -3.8226728 -5.6141334
2.623845 -0.8072968 1.9635103 -7.3128724 0.01103897
-9.723131 0.6619743 -6.976803 10.213478 7.494748
2.9105635 3.8949256 3.7999806 7.1061673 16.905321
-7.1493764 8.733103 3.4230042 -4.831653 -11.403367
11.232214 7.1274667 -4.2828417 2.452362 -5.130748
-18.177666 -2.6116815 -11.000337 -6.7314315 1.6564683
0.7618269 1.1253023 -2.083836 4.725744 -8.782597
-3.539873 3.814236 5.1420674 2.162061 4.096431
-6.4162116 12.747448 1.9429878 -15.152943 6.417416
16.097002 -9.716668 -1.9920526 -3.3649497 -1.871939
11.567354 3.69788 11.258265 7.442363 9.183411
4.5281515 -1.2417862 4.3959084 6.6727695 5.8898783
7.627124 -0.66919386 -11.889693 -9.208865 -7.4274073
-3.7776625 6.917234 -9.848748 -2.0944717 -5.135116
0.49563864 9.317534 -5.9141874 -1.8098574 -0.11738578
-7.169265 -1.0578263 -5.7216787 -5.1173844 16.137651
-4.473626 7.6624317 -0.55381083 9.631587 -6.4704556
-8.548508 4.3716145 -0.79702514 4.478997 -2.9758704
3.272176 2.8382776 5.134597 -9.190781 -0.5657382
-4.8745747 2.3165567 -5.984303 -2.1798875 0.35541576
-0.31784213 9.493548 2.1144536 4.358092 -12.089823
8.451689 -7.925461 4.6242585 4.4289427 18.692003
-2.6204622 -5.149185 -0.35821092 8.488551 4.981496
-9.32683 -2.2544234 6.6417594 1.2119585 10.977129
16.555033 3.3238444 9.551863 -1.6676947 -0.79539716
-8.605674 -0.47356385 2.6741948 -5.359179 -2.6673796
0.66607 15.443222 4.740594 -3.4725387 11.592567
-2.054497 1.7361217 -8.265324 -9.30447 5.4068313
-1.5180256 -7.746615 -6.089606 0.07112726 -0.34904733
-8.649895 -9.998958 -2.564841 -0.53999114 2.601808
-0.31927416 -1.8815292 -2.07215 -3.4105783 -8.2998085
1.483641 -15.365992 -8.288208 3.8847756 -3.4876456
7.3629923 0.4657332 3.132599 12.438889 -1.8337058
4.532936 2.7264361 10.145339 -6.521951 2.897153
-3.3925855 5.079156 7.759716 4.677565 5.8457737
2.402413 7.7071047 3.9711342 -6.390043 6.1268735
-3.7760346 -11.118123 ]
```
- Python API
```python
import paddle
from paddlespeech.cli import VectorExecutor
vector_executor = VectorExecutor()
audio_emb = vector_executor(
model='ecapatdnn_voxceleb12',
sample_rate=16000,
config=None, # Set `config` and `ckpt_path` to None to use pretrained model.
ckpt_path=None,
audio_file='./85236145389.wav',
device=paddle.get_device())
print('Audio embedding Result: \n{}'.format(audio_emb))
test_emb = vector_executor(
model='ecapatdnn_voxceleb12',
sample_rate=16000,
config=None, # Set `config` and `ckpt_path` to None to use pretrained model.
ckpt_path=None,
audio_file='./123456789.wav',
device=paddle.get_device())
print('Test embedding Result: \n{}'.format(test_emb))
# score range [0, 1]
score = vector_executor.get_embeddings_score(audio_emb, test_emb)
print(f"Eembeddings Score: {score}")
```
Output
```bash
# Vector Result:
Audio embedding Result:
[ 1.4217498 5.626253 -5.342073 1.1773866 3.308055
1.756596 5.167894 10.80636 -3.8226728 -5.6141334
2.623845 -0.8072968 1.9635103 -7.3128724 0.01103897
-9.723131 0.6619743 -6.976803 10.213478 7.494748
2.9105635 3.8949256 3.7999806 7.1061673 16.905321
-7.1493764 8.733103 3.4230042 -4.831653 -11.403367
11.232214 7.1274667 -4.2828417 2.452362 -5.130748
-18.177666 -2.6116815 -11.000337 -6.7314315 1.6564683
0.7618269 1.1253023 -2.083836 4.725744 -8.782597
-3.539873 3.814236 5.1420674 2.162061 4.096431
-6.4162116 12.747448 1.9429878 -15.152943 6.417416
16.097002 -9.716668 -1.9920526 -3.3649497 -1.871939
11.567354 3.69788 11.258265 7.442363 9.183411
4.5281515 -1.2417862 4.3959084 6.6727695 5.8898783
7.627124 -0.66919386 -11.889693 -9.208865 -7.4274073
-3.7776625 6.917234 -9.848748 -2.0944717 -5.135116
0.49563864 9.317534 -5.9141874 -1.8098574 -0.11738578
-7.169265 -1.0578263 -5.7216787 -5.1173844 16.137651
-4.473626 7.6624317 -0.55381083 9.631587 -6.4704556
-8.548508 4.3716145 -0.79702514 4.478997 -2.9758704
3.272176 2.8382776 5.134597 -9.190781 -0.5657382
-4.8745747 2.3165567 -5.984303 -2.1798875 0.35541576
-0.31784213 9.493548 2.1144536 4.358092 -12.089823
8.451689 -7.925461 4.6242585 4.4289427 18.692003
-2.6204622 -5.149185 -0.35821092 8.488551 4.981496
-9.32683 -2.2544234 6.6417594 1.2119585 10.977129
16.555033 3.3238444 9.551863 -1.6676947 -0.79539716
-8.605674 -0.47356385 2.6741948 -5.359179 -2.6673796
0.66607 15.443222 4.740594 -3.4725387 11.592567
-2.054497 1.7361217 -8.265324 -9.30447 5.4068313
-1.5180256 -7.746615 -6.089606 0.07112726 -0.34904733
-8.649895 -9.998958 -2.564841 -0.53999114 2.601808
-0.31927416 -1.8815292 -2.07215 -3.4105783 -8.2998085
1.483641 -15.365992 -8.288208 3.8847756 -3.4876456
7.3629923 0.4657332 3.132599 12.438889 -1.8337058
4.532936 2.7264361 10.145339 -6.521951 2.897153
-3.3925855 5.079156 7.759716 4.677565 5.8457737
2.402413 7.7071047 3.9711342 -6.390043 6.1268735
-3.7760346 -11.118123 ]
# get the test embedding
Test embedding Result:
[ -1.902964 2.0690894 -8.034194 3.5472693 0.18089125
6.9085927 1.4097427 -1.9487704 -10.021278 -0.20755845
-8.04332 4.344489 2.3200977 -14.306299 5.184692
-11.55602 -3.8497238 0.6444722 1.2833948 2.6766639
0.5878921 0.7946299 1.7207596 2.5791872 14.998469
-1.3385371 15.031221 -0.8006958 1.99287 -9.52007
2.435466 4.003221 -4.33817 -4.898601 -5.304714
-18.033886 10.790787 -12.784645 -5.641755 2.9761686
-10.566622 1.4839455 6.152458 -5.7195854 2.8603241
6.112133 8.489869 5.5958056 1.2836679 -1.2293907
0.89927405 7.0288725 -2.854029 -0.9782962 5.8255906
14.905906 -5.025907 0.7866458 -4.2444224 -16.354029
10.521315 0.9604709 -3.3257897 7.144871 -13.592733
-8.568869 -1.7953678 0.26313916 10.916714 -6.9374123
1.857403 -6.2746415 2.8154466 -7.2338667 -2.293357
-0.05452765 5.4287076 5.0849075 -6.690375 -1.6183422
3.654291 0.94352573 -9.200294 -5.4749465 -3.5235846
1.3420814 4.240421 -2.772944 -2.8451524 16.311104
4.2969875 -1.762936 -12.5758915 8.595198 -0.8835239
-1.5708797 1.568961 1.1413603 3.5032008 -0.45251232
-6.786333 16.89443 5.3366146 -8.789056 0.6355629
3.2579517 -3.328322 7.5969577 0.66025066 -6.550468
-9.148656 2.020372 -0.4615173 1.1965656 -3.8764873
11.6562195 -6.0750933 12.182899 3.2218833 0.81969476
5.570001 -3.8459578 -7.205299 7.9262037 -7.6611166
-5.249467 -2.2671914 7.2658715 -13.298164 4.821147
-2.7263982 11.691089 -3.8918593 -2.838112 -1.0336838
-3.8034165 2.8536487 -5.60398 -1.1972581 1.3455094
-3.4903061 2.2408795 5.5010734 -3.970756 11.99696
-7.8858757 0.43160373 -5.5059714 4.3426995 16.322706
11.635366 0.72157705 -9.245714 -3.91465 -4.449838
-1.5716927 7.713747 -2.2430465 -6.198303 -13.481864
2.8156567 -5.7812386 5.1456156 2.7289324 -14.505571
13.270688 3.448231 -7.0659585 4.5886116 -4.466099
-0.296428 -11.463529 -2.6076477 14.110243 -6.9725137
-1.9962958 2.7119343 19.391657 0.01961198 14.607133
-1.6695905 -4.391516 1.3131028 -6.670972 -5.888604
12.0612335 5.9285784 3.3715196 1.492534 10.723728
-0.95514804 -12.085431 ]
# get the score between enroll and test
Eembeddings Score: 0.4292638301849365
```
### 4.Pretrained Models
Here is a list of pretrained models released by PaddleSpeech that can be used by command and python API:
| Model | Sample Rate
| :--- | :---: |
| ecapatdnn_voxceleb12 | 16k