You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/examples/other/tts_finetune/tts3/local/extract_feature.py

336 lines
11 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
from operator import itemgetter
from pathlib import Path
from typing import Dict
from typing import Union
import jsonlines
import numpy as np
import yaml
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
from yacs.config import CfgNode
from paddlespeech.t2s.datasets.data_table import DataTable
from paddlespeech.t2s.datasets.get_feats import Energy
from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.datasets.get_feats import Pitch
from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur
from paddlespeech.t2s.datasets.preprocess_utils import merge_silence
from paddlespeech.t2s.exps.fastspeech2.preprocess import process_sentences
def read_stats(stats_file: Union[str, Path]):
scaler = StandardScaler()
scaler.mean_ = np.load(stats_file)[0]
scaler.scale_ = np.load(stats_file)[1]
scaler.n_features_in_ = scaler.mean_.shape[0]
return scaler
def get_stats(pretrained_model_dir: Path):
speech_stats_file = pretrained_model_dir / "speech_stats.npy"
pitch_stats_file = pretrained_model_dir / "pitch_stats.npy"
energy_stats_file = pretrained_model_dir / "energy_stats.npy"
speech_scaler = read_stats(speech_stats_file)
pitch_scaler = read_stats(pitch_stats_file)
energy_scaler = read_stats(energy_stats_file)
return speech_scaler, pitch_scaler, energy_scaler
def get_map(duration_file: Union[str, Path],
dump_dir: Path,
pretrained_model_dir: Path):
"""get phone map and speaker map, save on dump_dir
Args:
duration_file (str): durantions.txt
dump_dir (Path): dump dir
pretrained_model_dir (Path): pretrained model dir
"""
# copy phone map file from pretrained model path
phones_dict = dump_dir / "phone_id_map.txt"
os.system("cp %s %s" %
(pretrained_model_dir / "phone_id_map.txt", phones_dict))
# create a new speaker map file, replace the previous speakers.
sentences, speaker_set = get_phn_dur(duration_file)
merge_silence(sentences)
speakers = sorted(list(speaker_set))
num = len(speakers)
speaker_dict = dump_dir / "speaker_id_map.txt"
with open(speaker_dict, 'w') as f, open(pretrained_model_dir /
"speaker_id_map.txt", 'r') as fr:
for i, spk in enumerate(speakers):
f.write(spk + ' ' + str(i) + '\n')
for line in fr.readlines():
spk_id = line.strip().split(" ")[-1]
if int(spk_id) >= num:
f.write(line)
vocab_phones = {}
with open(phones_dict, 'rt') as f:
phn_id = [line.strip().split() for line in f.readlines()]
for phn, id in phn_id:
vocab_phones[phn] = int(id)
vocab_speaker = {}
with open(speaker_dict, 'rt') as f:
spk_id = [line.strip().split() for line in f.readlines()]
for spk, id in spk_id:
vocab_speaker[spk] = int(id)
return sentences, vocab_phones, vocab_speaker
def get_extractor(config):
# Extractor
mel_extractor = LogMelFBank(
sr=config.fs,
n_fft=config.n_fft,
hop_length=config.n_shift,
win_length=config.win_length,
window=config.window,
n_mels=config.n_mels,
fmin=config.fmin,
fmax=config.fmax)
pitch_extractor = Pitch(
sr=config.fs,
hop_length=config.n_shift,
f0min=config.f0min,
f0max=config.f0max)
energy_extractor = Energy(
n_fft=config.n_fft,
hop_length=config.n_shift,
win_length=config.win_length,
window=config.window)
return mel_extractor, pitch_extractor, energy_extractor
def normalize(speech_scaler,
pitch_scaler,
energy_scaler,
vocab_phones: Dict,
vocab_speaker: Dict,
raw_dump_dir: Path,
type: str):
dumpdir = raw_dump_dir / type / "norm"
dumpdir = Path(dumpdir).expanduser()
dumpdir.mkdir(parents=True, exist_ok=True)
# get dataset
metadata_file = raw_dump_dir / type / "raw" / "metadata.jsonl"
with jsonlines.open(metadata_file, 'r') as reader:
metadata = list(reader)
dataset = DataTable(
metadata,
converters={
"speech": np.load,
"pitch": np.load,
"energy": np.load,
})
logging.info(f"The number of files = {len(dataset)}.")
# process each file
output_metadata = []
for item in tqdm(dataset):
utt_id = item['utt_id']
speech = item['speech']
pitch = item['pitch']
energy = item['energy']
# normalize
speech = speech_scaler.transform(speech)
speech_dir = dumpdir / "data_speech"
speech_dir.mkdir(parents=True, exist_ok=True)
speech_path = speech_dir / f"{utt_id}_speech.npy"
np.save(speech_path, speech.astype(np.float32), allow_pickle=False)
pitch = pitch_scaler.transform(pitch)
pitch_dir = dumpdir / "data_pitch"
pitch_dir.mkdir(parents=True, exist_ok=True)
pitch_path = pitch_dir / f"{utt_id}_pitch.npy"
np.save(pitch_path, pitch.astype(np.float32), allow_pickle=False)
energy = energy_scaler.transform(energy)
energy_dir = dumpdir / "data_energy"
energy_dir.mkdir(parents=True, exist_ok=True)
energy_path = energy_dir / f"{utt_id}_energy.npy"
np.save(energy_path, energy.astype(np.float32), allow_pickle=False)
phone_ids = [vocab_phones[p] for p in item['phones']]
spk_id = vocab_speaker[item["speaker"]]
record = {
"utt_id": item['utt_id'],
"spk_id": spk_id,
"text": phone_ids,
"text_lengths": item['text_lengths'],
"speech_lengths": item['speech_lengths'],
"durations": item['durations'],
"speech": str(speech_path),
"pitch": str(pitch_path),
"energy": str(energy_path)
}
# add spk_emb for voice cloning
if "spk_emb" in item:
record["spk_emb"] = str(item["spk_emb"])
output_metadata.append(record)
output_metadata.sort(key=itemgetter('utt_id'))
output_metadata_path = Path(dumpdir) / "metadata.jsonl"
with jsonlines.open(output_metadata_path, 'w') as writer:
for item in output_metadata:
writer.write(item)
logging.info(f"metadata dumped into {output_metadata_path}")
def extract_feature(duration_file: str,
config,
input_dir: Path,
dump_dir: Path,
pretrained_model_dir: Path):
sentences, vocab_phones, vocab_speaker = get_map(duration_file, dump_dir,
pretrained_model_dir)
mel_extractor, pitch_extractor, energy_extractor = get_extractor(config)
wav_files = sorted(list((input_dir).rglob("*.wav")))
# split data into 3 sections, train: len(wav_files) - 2, dev: 1, test: 1
num_train = len(wav_files) - 2
num_dev = 1
print(num_train, num_dev)
train_wav_files = wav_files[:num_train]
dev_wav_files = wav_files[num_train:num_train + num_dev]
test_wav_files = wav_files[num_train + num_dev:]
train_dump_dir = dump_dir / "train" / "raw"
train_dump_dir.mkdir(parents=True, exist_ok=True)
dev_dump_dir = dump_dir / "dev" / "raw"
dev_dump_dir.mkdir(parents=True, exist_ok=True)
test_dump_dir = dump_dir / "test" / "raw"
test_dump_dir.mkdir(parents=True, exist_ok=True)
# process for the 3 sections
num_cpu = 4
cut_sil = True
spk_emb_dir = None
write_metadata_method = "w"
speech_scaler, pitch_scaler, energy_scaler = get_stats(pretrained_model_dir)
if train_wav_files:
process_sentences(
config=config,
fps=train_wav_files,
sentences=sentences,
output_dir=train_dump_dir,
mel_extractor=mel_extractor,
pitch_extractor=pitch_extractor,
energy_extractor=energy_extractor,
nprocs=num_cpu,
cut_sil=cut_sil,
spk_emb_dir=spk_emb_dir,
write_metadata_method=write_metadata_method)
# norm
normalize(speech_scaler, pitch_scaler, energy_scaler, vocab_phones,
vocab_speaker, dump_dir, "train")
if dev_wav_files:
process_sentences(
config=config,
fps=dev_wav_files,
sentences=sentences,
output_dir=dev_dump_dir,
mel_extractor=mel_extractor,
pitch_extractor=pitch_extractor,
energy_extractor=energy_extractor,
nprocs=num_cpu,
cut_sil=cut_sil,
spk_emb_dir=spk_emb_dir,
write_metadata_method=write_metadata_method)
# norm
normalize(speech_scaler, pitch_scaler, energy_scaler, vocab_phones,
vocab_speaker, dump_dir, "dev")
if test_wav_files:
process_sentences(
config=config,
fps=test_wav_files,
sentences=sentences,
output_dir=test_dump_dir,
mel_extractor=mel_extractor,
pitch_extractor=pitch_extractor,
energy_extractor=energy_extractor,
nprocs=num_cpu,
cut_sil=cut_sil,
spk_emb_dir=spk_emb_dir,
write_metadata_method=write_metadata_method)
# norm
normalize(speech_scaler, pitch_scaler, energy_scaler, vocab_phones,
vocab_speaker, dump_dir, "test")
if __name__ == '__main__':
# parse config and args
parser = argparse.ArgumentParser(
description="Preprocess audio and then extract features.")
parser.add_argument(
"--duration_file",
type=str,
default="./durations.txt",
help="duration file")
parser.add_argument(
"--input_dir",
type=str,
default="./input/baker_mini/newdir",
help="directory containing audio and label file")
parser.add_argument(
"--dump_dir", type=str, default="./dump", help="dump dir")
parser.add_argument(
"--pretrained_model_dir",
type=str,
default="./pretrained_models/fastspeech2_aishell3_ckpt_1.1.0",
help="Path to pretrained model")
args = parser.parse_args()
input_dir = Path(args.input_dir).expanduser()
dump_dir = Path(args.dump_dir).expanduser()
dump_dir.mkdir(parents=True, exist_ok=True)
pretrained_model_dir = Path(args.pretrained_model_dir).expanduser()
# read config
config_file = pretrained_model_dir / "default.yaml"
with open(config_file) as f:
config = CfgNode(yaml.safe_load(f))
extract_feature(
duration_file=args.duration_file,
config=config,
input_dir=input_dir,
dump_dir=dump_dir,
pretrained_model_dir=pretrained_model_dir)