# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os from operator import itemgetter from pathlib import Path from typing import Dict from typing import Union import jsonlines import numpy as np import yaml from sklearn.preprocessing import StandardScaler from tqdm import tqdm from yacs.config import CfgNode from paddlespeech.t2s.datasets.data_table import DataTable from paddlespeech.t2s.datasets.get_feats import Energy from paddlespeech.t2s.datasets.get_feats import LogMelFBank from paddlespeech.t2s.datasets.get_feats import Pitch from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur from paddlespeech.t2s.datasets.preprocess_utils import merge_silence from paddlespeech.t2s.exps.fastspeech2.preprocess import process_sentences def read_stats(stats_file: Union[str, Path]): scaler = StandardScaler() scaler.mean_ = np.load(stats_file)[0] scaler.scale_ = np.load(stats_file)[1] scaler.n_features_in_ = scaler.mean_.shape[0] return scaler def get_stats(pretrained_model_dir: Path): speech_stats_file = pretrained_model_dir / "speech_stats.npy" pitch_stats_file = pretrained_model_dir / "pitch_stats.npy" energy_stats_file = pretrained_model_dir / "energy_stats.npy" speech_scaler = read_stats(speech_stats_file) pitch_scaler = read_stats(pitch_stats_file) energy_scaler = read_stats(energy_stats_file) return speech_scaler, pitch_scaler, energy_scaler def get_map(duration_file: Union[str, Path], dump_dir: Path, pretrained_model_dir: Path): """get phone map and speaker map, save on dump_dir Args: duration_file (str): durantions.txt dump_dir (Path): dump dir pretrained_model_dir (Path): pretrained model dir """ # copy phone map file from pretrained model path phones_dict = dump_dir / "phone_id_map.txt" os.system("cp %s %s" % (pretrained_model_dir / "phone_id_map.txt", phones_dict)) # create a new speaker map file, replace the previous speakers. sentences, speaker_set = get_phn_dur(duration_file) merge_silence(sentences) speakers = sorted(list(speaker_set)) num = len(speakers) speaker_dict = dump_dir / "speaker_id_map.txt" with open(speaker_dict, 'w') as f, open(pretrained_model_dir / "speaker_id_map.txt", 'r') as fr: for i, spk in enumerate(speakers): f.write(spk + ' ' + str(i) + '\n') for line in fr.readlines(): spk_id = line.strip().split(" ")[-1] if int(spk_id) >= num: f.write(line) vocab_phones = {} with open(phones_dict, 'rt') as f: phn_id = [line.strip().split() for line in f.readlines()] for phn, id in phn_id: vocab_phones[phn] = int(id) vocab_speaker = {} with open(speaker_dict, 'rt') as f: spk_id = [line.strip().split() for line in f.readlines()] for spk, id in spk_id: vocab_speaker[spk] = int(id) return sentences, vocab_phones, vocab_speaker def get_extractor(config): # Extractor mel_extractor = LogMelFBank( sr=config.fs, n_fft=config.n_fft, hop_length=config.n_shift, win_length=config.win_length, window=config.window, n_mels=config.n_mels, fmin=config.fmin, fmax=config.fmax) pitch_extractor = Pitch( sr=config.fs, hop_length=config.n_shift, f0min=config.f0min, f0max=config.f0max) energy_extractor = Energy( n_fft=config.n_fft, hop_length=config.n_shift, win_length=config.win_length, window=config.window) return mel_extractor, pitch_extractor, energy_extractor def normalize(speech_scaler, pitch_scaler, energy_scaler, vocab_phones: Dict, vocab_speaker: Dict, raw_dump_dir: Path, type: str): dumpdir = raw_dump_dir / type / "norm" dumpdir = Path(dumpdir).expanduser() dumpdir.mkdir(parents=True, exist_ok=True) # get dataset metadata_file = raw_dump_dir / type / "raw" / "metadata.jsonl" with jsonlines.open(metadata_file, 'r') as reader: metadata = list(reader) dataset = DataTable( metadata, converters={ "speech": np.load, "pitch": np.load, "energy": np.load, }) logging.info(f"The number of files = {len(dataset)}.") # process each file output_metadata = [] for item in tqdm(dataset): utt_id = item['utt_id'] speech = item['speech'] pitch = item['pitch'] energy = item['energy'] # normalize speech = speech_scaler.transform(speech) speech_dir = dumpdir / "data_speech" speech_dir.mkdir(parents=True, exist_ok=True) speech_path = speech_dir / f"{utt_id}_speech.npy" np.save(speech_path, speech.astype(np.float32), allow_pickle=False) pitch = pitch_scaler.transform(pitch) pitch_dir = dumpdir / "data_pitch" pitch_dir.mkdir(parents=True, exist_ok=True) pitch_path = pitch_dir / f"{utt_id}_pitch.npy" np.save(pitch_path, pitch.astype(np.float32), allow_pickle=False) energy = energy_scaler.transform(energy) energy_dir = dumpdir / "data_energy" energy_dir.mkdir(parents=True, exist_ok=True) energy_path = energy_dir / f"{utt_id}_energy.npy" np.save(energy_path, energy.astype(np.float32), allow_pickle=False) phone_ids = [vocab_phones[p] for p in item['phones']] spk_id = vocab_speaker[item["speaker"]] record = { "utt_id": item['utt_id'], "spk_id": spk_id, "text": phone_ids, "text_lengths": item['text_lengths'], "speech_lengths": item['speech_lengths'], "durations": item['durations'], "speech": str(speech_path), "pitch": str(pitch_path), "energy": str(energy_path) } # add spk_emb for voice cloning if "spk_emb" in item: record["spk_emb"] = str(item["spk_emb"]) output_metadata.append(record) output_metadata.sort(key=itemgetter('utt_id')) output_metadata_path = Path(dumpdir) / "metadata.jsonl" with jsonlines.open(output_metadata_path, 'w') as writer: for item in output_metadata: writer.write(item) logging.info(f"metadata dumped into {output_metadata_path}") def extract_feature(duration_file: str, config, input_dir: Path, dump_dir: Path, pretrained_model_dir: Path): sentences, vocab_phones, vocab_speaker = get_map(duration_file, dump_dir, pretrained_model_dir) mel_extractor, pitch_extractor, energy_extractor = get_extractor(config) wav_files = sorted(list((input_dir).rglob("*.wav"))) # split data into 3 sections, train: len(wav_files) - 2, dev: 1, test: 1 num_train = len(wav_files) - 2 num_dev = 1 print(num_train, num_dev) train_wav_files = wav_files[:num_train] dev_wav_files = wav_files[num_train:num_train + num_dev] test_wav_files = wav_files[num_train + num_dev:] train_dump_dir = dump_dir / "train" / "raw" train_dump_dir.mkdir(parents=True, exist_ok=True) dev_dump_dir = dump_dir / "dev" / "raw" dev_dump_dir.mkdir(parents=True, exist_ok=True) test_dump_dir = dump_dir / "test" / "raw" test_dump_dir.mkdir(parents=True, exist_ok=True) # process for the 3 sections num_cpu = 4 cut_sil = True spk_emb_dir = None write_metadata_method = "w" speech_scaler, pitch_scaler, energy_scaler = get_stats(pretrained_model_dir) if train_wav_files: process_sentences( config=config, fps=train_wav_files, sentences=sentences, output_dir=train_dump_dir, mel_extractor=mel_extractor, pitch_extractor=pitch_extractor, energy_extractor=energy_extractor, nprocs=num_cpu, cut_sil=cut_sil, spk_emb_dir=spk_emb_dir, write_metadata_method=write_metadata_method) # norm normalize(speech_scaler, pitch_scaler, energy_scaler, vocab_phones, vocab_speaker, dump_dir, "train") if dev_wav_files: process_sentences( config=config, fps=dev_wav_files, sentences=sentences, output_dir=dev_dump_dir, mel_extractor=mel_extractor, pitch_extractor=pitch_extractor, energy_extractor=energy_extractor, nprocs=num_cpu, cut_sil=cut_sil, spk_emb_dir=spk_emb_dir, write_metadata_method=write_metadata_method) # norm normalize(speech_scaler, pitch_scaler, energy_scaler, vocab_phones, vocab_speaker, dump_dir, "dev") if test_wav_files: process_sentences( config=config, fps=test_wav_files, sentences=sentences, output_dir=test_dump_dir, mel_extractor=mel_extractor, pitch_extractor=pitch_extractor, energy_extractor=energy_extractor, nprocs=num_cpu, cut_sil=cut_sil, spk_emb_dir=spk_emb_dir, write_metadata_method=write_metadata_method) # norm normalize(speech_scaler, pitch_scaler, energy_scaler, vocab_phones, vocab_speaker, dump_dir, "test") if __name__ == '__main__': # parse config and args parser = argparse.ArgumentParser( description="Preprocess audio and then extract features.") parser.add_argument( "--duration_file", type=str, default="./durations.txt", help="duration file") parser.add_argument( "--input_dir", type=str, default="./input/baker_mini/newdir", help="directory containing audio and label file") parser.add_argument( "--dump_dir", type=str, default="./dump", help="dump dir") parser.add_argument( "--pretrained_model_dir", type=str, default="./pretrained_models/fastspeech2_aishell3_ckpt_1.1.0", help="Path to pretrained model") args = parser.parse_args() input_dir = Path(args.input_dir).expanduser() dump_dir = Path(args.dump_dir).expanduser() dump_dir.mkdir(parents=True, exist_ok=True) pretrained_model_dir = Path(args.pretrained_model_dir).expanduser() # read config config_file = pretrained_model_dir / "default.yaml" with open(config_file) as f: config = CfgNode(yaml.safe_load(f)) extract_feature( duration_file=args.duration_file, config=config, input_dir=input_dir, dump_dir=dump_dir, pretrained_model_dir=pretrained_model_dir)