You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/tests/unit/tts/test_fftconv1d.py

129 lines
4.6 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import unittest
import numpy as np
import paddle
from paddle.nn import Conv1D
from paddlespeech.t2s.modules import fft_conv1d
from paddlespeech.t2s.modules import FFTConv1D
class TestFFTConv1D(unittest.TestCase):
def setUp(self):
self.batch_size = 4
self.in_channels = 3
self.out_channels = 16
self.kernel_size = 5
self.stride = 1
self.padding = 1
self.input_length = 32
def _init_models(self, in_channels, out_channels, kernel_size, stride,
padding):
x = paddle.randn([self.batch_size, in_channels, self.input_length])
conv1d = paddle.nn.Conv1D(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding)
fft_conv1d = FFTConv1D(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding)
fft_conv1d.weight.set_value(conv1d.weight.numpy())
if conv1d.bias is not None:
fft_conv1d.bias.set_value(conv1d.bias.numpy())
return x, conv1d, fft_conv1d
def test_fft_conv1d_vs_conv1d_default(self):
x, conv1d, fft_conv1d = self._init_models(
self.in_channels, self.out_channels, self.kernel_size, self.stride,
self.padding)
out_conv1d = conv1d(x)
out_fft_conv1d = fft_conv1d(x)
self.assertTrue(
np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-6))
def test_fft_conv1d_vs_conv1d_no_padding(self):
x, conv1d, fft_conv1d = self._init_models(
self.in_channels, self.out_channels, self.kernel_size, self.stride,
0)
out_conv1d = conv1d(x)
out_fft_conv1d = fft_conv1d(x)
self.assertTrue(
np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-6))
def test_fft_conv1d_vs_conv1d_large_kernel(self):
kernel_size = 256
padding = kernel_size - 1
x, conv1d, fft_conv1d = self._init_models(
self.in_channels, self.out_channels, kernel_size, self.stride,
padding)
out_conv1d = conv1d(x)
out_fft_conv1d = fft_conv1d(x)
self.assertTrue(
np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-6))
def test_fft_conv1d_vs_conv1d_stride_2(self):
x, conv1d, fft_conv1d = self._init_models(
self.in_channels, self.out_channels, self.kernel_size, 2,
self.padding)
out_conv1d = conv1d(x)
out_fft_conv1d = fft_conv1d(x)
self.assertTrue(
np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-6))
def test_fft_conv1d_vs_conv1d_different_input_length(self):
input_length = 1024
x, conv1d, fft_conv1d = self._init_models(
self.in_channels, self.out_channels, self.kernel_size, self.stride,
self.padding)
x = paddle.randn([self.batch_size, self.in_channels, input_length])
out_conv1d = conv1d(x)
out_fft_conv1d = fft_conv1d(x)
self.assertTrue(
np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-6))
def test_fft_conv1d_vs_conv1d_no_bias(self):
conv1d = paddle.nn.Conv1D(
self.in_channels,
self.out_channels,
self.kernel_size,
stride=self.stride,
padding=self.padding,
bias_attr=False)
fft_conv1d = FFTConv1D(
self.in_channels,
self.out_channels,
self.kernel_size,
stride=self.stride,
padding=self.padding,
bias_attr=False)
fft_conv1d.weight.set_value(conv1d.weight.numpy())
x = paddle.randn([self.batch_size, self.in_channels, self.input_length])
out_conv1d = conv1d(x)
out_fft_conv1d = fft_conv1d(x)
self.assertTrue(
np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-6))
if __name__ == '__main__':
unittest.main()