# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import unittest import numpy as np import paddle from paddle.nn import Conv1D from paddlespeech.t2s.modules import fft_conv1d from paddlespeech.t2s.modules import FFTConv1D class TestFFTConv1D(unittest.TestCase): def setUp(self): self.batch_size = 4 self.in_channels = 3 self.out_channels = 16 self.kernel_size = 5 self.stride = 1 self.padding = 1 self.input_length = 32 def _init_models(self, in_channels, out_channels, kernel_size, stride, padding): x = paddle.randn([self.batch_size, in_channels, self.input_length]) conv1d = paddle.nn.Conv1D( in_channels, out_channels, kernel_size, stride=stride, padding=padding) fft_conv1d = FFTConv1D( in_channels, out_channels, kernel_size, stride=stride, padding=padding) fft_conv1d.weight.set_value(conv1d.weight.numpy()) if conv1d.bias is not None: fft_conv1d.bias.set_value(conv1d.bias.numpy()) return x, conv1d, fft_conv1d def test_fft_conv1d_vs_conv1d_default(self): x, conv1d, fft_conv1d = self._init_models( self.in_channels, self.out_channels, self.kernel_size, self.stride, self.padding) out_conv1d = conv1d(x) out_fft_conv1d = fft_conv1d(x) self.assertTrue( np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-6)) def test_fft_conv1d_vs_conv1d_no_padding(self): x, conv1d, fft_conv1d = self._init_models( self.in_channels, self.out_channels, self.kernel_size, self.stride, 0) out_conv1d = conv1d(x) out_fft_conv1d = fft_conv1d(x) self.assertTrue( np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-6)) def test_fft_conv1d_vs_conv1d_large_kernel(self): kernel_size = 256 padding = kernel_size - 1 x, conv1d, fft_conv1d = self._init_models( self.in_channels, self.out_channels, kernel_size, self.stride, padding) out_conv1d = conv1d(x) out_fft_conv1d = fft_conv1d(x) self.assertTrue( np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-6)) def test_fft_conv1d_vs_conv1d_stride_2(self): x, conv1d, fft_conv1d = self._init_models( self.in_channels, self.out_channels, self.kernel_size, 2, self.padding) out_conv1d = conv1d(x) out_fft_conv1d = fft_conv1d(x) self.assertTrue( np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-6)) def test_fft_conv1d_vs_conv1d_different_input_length(self): input_length = 1024 x, conv1d, fft_conv1d = self._init_models( self.in_channels, self.out_channels, self.kernel_size, self.stride, self.padding) x = paddle.randn([self.batch_size, self.in_channels, input_length]) out_conv1d = conv1d(x) out_fft_conv1d = fft_conv1d(x) self.assertTrue( np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-6)) def test_fft_conv1d_vs_conv1d_no_bias(self): conv1d = paddle.nn.Conv1D( self.in_channels, self.out_channels, self.kernel_size, stride=self.stride, padding=self.padding, bias_attr=False) fft_conv1d = FFTConv1D( self.in_channels, self.out_channels, self.kernel_size, stride=self.stride, padding=self.padding, bias_attr=False) fft_conv1d.weight.set_value(conv1d.weight.numpy()) x = paddle.randn([self.batch_size, self.in_channels, self.input_length]) out_conv1d = conv1d(x) out_fft_conv1d = fft_conv1d(x) self.assertTrue( np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-6)) if __name__ == '__main__': unittest.main()