2.5 KiB
Run DS2 on PaddleCloud
Note: Make sure current directory is
models/deep_speech_2/cloud/
Step1 Configure data set
You can configure your input data and output path in pcloud_submit.sh:
TRAIN_MANIFEST: Absolute path of train data manifest file in local file system.This file has format as bellow:
{"audio_filepath": "/home/disk1/LibriSpeech/dev-clean/1272/128104/1272-128104-0000.flac", "duration": 5.855, "text
": "mister quilter is the ..."}
{"audio_filepath": "/home/disk1/LibriSpeech/dev-clean/1272/128104/1272-128104-0001.flac", "duration": 4.815, "text
": "nor is mister ..."}
-
TEST_MANIFEST: Absolute path of train data manifest file in local filesystem.This file has format like TRAIN_MANIFEST. -
VOCAB_FILE: Absolute path of vocabulary file in local filesytem. -
MEAN_STD_FILE: Absolute path of vocabulary file in local filesytem. -
CLOUD_DATA_DIR:Absolute path in PaddleCloud filesystem. We will upload local train data to this directory. -
CLOUD_MODEL_DIR: Absolute path in PaddleCloud filesystem. PaddleCloud trainer will save model to this directory.
Note: Upload will be skipped if target file has existed in ${CLOUD_DATA_DIR}.
Step2 Configure computation resource
You can configure computation resource in pcloud_submit.sh:
# Configure computation resource and submit job to PaddleCloud
paddlecloud submit \
-image wanghaoshuang/pcloud_ds2:latest \
-jobname ${JOB_NAME} \
-cpu 4 \
-gpu 4 \
-memory 10Gi \
-parallelism 1 \
-pscpu 1 \
-pservers 1 \
-psmemory 10Gi \
-passes 1 \
-entry "sh pcloud_train.sh ${CLOUD_DATA_DIR} ${CLOUD_MODEL_DIR}" \
${DS2_PATH}
For more information, please refer toPaddleCloud
Step3 Configure algorithm options
You can configure algorithm options in pcloud_train.sh:
python train.py \
--use_gpu=1 \
--trainer_count=4 \
--batch_size=256 \
--mean_std_filepath=$MEAN_STD_FILE \
--train_manifest_path='./local.train.manifest' \
--dev_manifest_path='./local.test.manifest' \
--vocab_filepath=$VOCAB_PATH \
--output_model_dir=${MODEL_PATH}
You can get more information about algorithm options by follow command:
cd ..
python train.py --help
Step4 Submit job
$ sh pcloud_submit.sh
Step5 Get logs
$ paddlecloud logs -n 10000 deepspeech20170727130129
For more information, please refer to PaddleCloud client or get help by follow command:
paddlecloud --help