You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/demos/speaker_verification/README_cn.md

218 lines
11 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

(简体中文|[English](./README.md))
# 声纹识别
## 介绍
声纹识别是一项用计算机程序自动提取说话人特征的技术。
这个 demo 是从一个给定音频文件中提取说话人特征,它可以通过使用 `PaddleSpeech` 的单个命令或 python 中的几行代码来实现。
## 使用方法
### 1. 安装
请看[安装文档](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install_cn.md)。
你可以从easy mediumhard 三种方式中选择一种方式安装。
### 2. 准备输入
声纹cli demo 的输入应该是一个 WAV 文件(`.wav`),并且采样率必须与模型的采样率相同。
可以下载此 demo 的示例音频:
```bash
# 该音频的内容是数字串 85236145389
wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
```
### 3. 使用方法
- 命令行 (推荐使用)
```bash
paddlespeech vector --task spk --input 85236145389.wav
echo -e "demo1 85236145389.wav" > vec.job
paddlespeech vector --task spk --input vec.job
echo -e "demo2 85236145389.wav \n demo3 85236145389.wav" | paddlespeech vector --task spk
paddlespeech vector --task score --input "./85236145389.wav ./123456789.wav"
echo -e "demo4 85236145389.wav 85236145389.wav \n demo5 85236145389.wav 123456789.wav" > vec.job
paddlespeech vector --task score --input vec.job
```
使用方法:
```bash
paddlespeech vector --help
```
参数:
- `input`(必须输入):用于识别的音频文件。
- `task` (必须输入): 用于指定 `vector` 处理的具体任务,默认是 `spk`
- `model`:声纹任务的模型,默认值:`ecapatdnn_voxceleb12`。
- `sample_rate`:音频采样率,默认值:`16000`。
- `config`:声纹任务的参数文件,若不设置则使用预训练模型中的默认配置,默认值:`None`。
- `ckpt_path`:模型参数文件,若不设置则下载预训练模型使用,默认值:`None`。
- `device`:执行预测的设备,默认值:当前系统下 paddlepaddle 的默认 device。
输出:
```bash
[ -1.3251206 7.8606825 -4.620626 0.3000721 2.2648535
-1.1931441 3.0647137 7.673595 -6.0044727 -12.02426
-1.9496069 3.1269536 1.618838 -7.6383104 -1.2299773
-12.338331 2.1373026 -5.3957124 9.717328 5.6752305
3.7805123 3.0597172 3.429692 8.97601 13.174125
-0.53132284 8.9424715 4.46511 -4.4262476 -9.726503
8.399328 7.2239175 -7.435854 2.9441683 -4.3430395
-13.886965 -1.6346735 -10.9027405 -5.311245 3.8007221
3.8976038 -2.1230774 -2.3521194 4.151031 -7.4048667
0.13911647 2.4626107 4.9664545 0.9897574 5.4839754
-3.3574002 10.1340065 -0.6120171 -10.403095 4.6007543
16.00935 -7.7836914 -4.1945305 -6.9368606 1.1789556
11.490801 4.2380238 9.550931 8.375046 7.5089145
-0.65707296 -0.30051577 2.8406055 3.0828028 0.730817
6.148354 0.13766119 -13.424735 -7.7461405 -2.3227983
-8.305252 2.9879124 -10.995229 0.15211068 -2.3820348
-1.7984174 8.495629 -5.8522367 -3.755498 0.6989711
-5.2702994 -2.6188622 -1.8828466 -4.64665 14.078544
-0.5495333 10.579158 -3.2160501 9.349004 -4.381078
-11.675817 -2.8630207 4.5721755 2.246612 -4.574342
1.8610188 2.3767874 5.6257877 -9.784078 0.64967257
-1.4579505 0.4263264 -4.9211264 -2.454784 3.4869802
-0.42654222 8.341269 1.356552 7.0966883 -13.102829
8.016734 -7.1159344 1.8699781 0.208721 14.699384
-1.025278 -2.6107233 -2.5082312 8.427193 6.9138527
-6.2912464 0.6157366 2.489688 -3.4668267 9.921763
11.200815 -0.1966403 7.4916005 -0.62312716 -0.25848144
-9.947997 -0.9611041 1.1649219 -2.1907122 -1.5028487
-0.51926106 15.165954 2.4649463 -0.9980445 7.4416637
-2.0768049 3.5896823 -7.3055434 -7.5620847 4.323335
0.0804418 -6.56401 -2.3148053 -1.7642345 -2.4708817
-7.675618 -9.548878 -1.0177554 0.16986446 2.5877135
-1.8752296 -0.36614323 -6.0493784 -2.3965611 -5.9453387
0.9424033 -13.155974 -7.457801 0.14658108 -3.742797
5.8414927 -1.2872906 5.5694313 12.57059 1.0939219
2.2142086 1.9181576 6.9914207 -5.888139 3.1409824
-2.003628 2.4434285 9.973139 5.03668 2.0051203
2.8615603 5.860224 2.9176188 -1.6311141 2.0292206
-4.070415 -6.831437 ]
```
- Python API
```python
import paddle
from paddlespeech.cli.vector import VectorExecutor
vector_executor = VectorExecutor()
audio_emb = vector_executor(
model='ecapatdnn_voxceleb12',
sample_rate=16000,
config=None, # Set `config` and `ckpt_path` to None to use pretrained model.
ckpt_path=None,
audio_file='./85236145389.wav',
device=paddle.get_device())
print('Audio embedding Result: \n{}'.format(audio_emb))
test_emb = vector_executor(
model='ecapatdnn_voxceleb12',
sample_rate=16000,
config=None, # Set `config` and `ckpt_path` to None to use pretrained model.
ckpt_path=None,
audio_file='./123456789.wav',
device=paddle.get_device())
print('Test embedding Result: \n{}'.format(test_emb))
# score range [0, 1]
score = vector_executor.get_embeddings_score(audio_emb, test_emb)
print(f"Eembeddings Score: {score}")
```
输出:
```bash
# Vector Result:
Audio embedding Result:
[ -1.3251206 7.8606825 -4.620626 0.3000721 2.2648535
-1.1931441 3.0647137 7.673595 -6.0044727 -12.02426
-1.9496069 3.1269536 1.618838 -7.6383104 -1.2299773
-12.338331 2.1373026 -5.3957124 9.717328 5.6752305
3.7805123 3.0597172 3.429692 8.97601 13.174125
-0.53132284 8.9424715 4.46511 -4.4262476 -9.726503
8.399328 7.2239175 -7.435854 2.9441683 -4.3430395
-13.886965 -1.6346735 -10.9027405 -5.311245 3.8007221
3.8976038 -2.1230774 -2.3521194 4.151031 -7.4048667
0.13911647 2.4626107 4.9664545 0.9897574 5.4839754
-3.3574002 10.1340065 -0.6120171 -10.403095 4.6007543
16.00935 -7.7836914 -4.1945305 -6.9368606 1.1789556
11.490801 4.2380238 9.550931 8.375046 7.5089145
-0.65707296 -0.30051577 2.8406055 3.0828028 0.730817
6.148354 0.13766119 -13.424735 -7.7461405 -2.3227983
-8.305252 2.9879124 -10.995229 0.15211068 -2.3820348
-1.7984174 8.495629 -5.8522367 -3.755498 0.6989711
-5.2702994 -2.6188622 -1.8828466 -4.64665 14.078544
-0.5495333 10.579158 -3.2160501 9.349004 -4.381078
-11.675817 -2.8630207 4.5721755 2.246612 -4.574342
1.8610188 2.3767874 5.6257877 -9.784078 0.64967257
-1.4579505 0.4263264 -4.9211264 -2.454784 3.4869802
-0.42654222 8.341269 1.356552 7.0966883 -13.102829
8.016734 -7.1159344 1.8699781 0.208721 14.699384
-1.025278 -2.6107233 -2.5082312 8.427193 6.9138527
-6.2912464 0.6157366 2.489688 -3.4668267 9.921763
11.200815 -0.1966403 7.4916005 -0.62312716 -0.25848144
-9.947997 -0.9611041 1.1649219 -2.1907122 -1.5028487
-0.51926106 15.165954 2.4649463 -0.9980445 7.4416637
-2.0768049 3.5896823 -7.3055434 -7.5620847 4.323335
0.0804418 -6.56401 -2.3148053 -1.7642345 -2.4708817
-7.675618 -9.548878 -1.0177554 0.16986446 2.5877135
-1.8752296 -0.36614323 -6.0493784 -2.3965611 -5.9453387
0.9424033 -13.155974 -7.457801 0.14658108 -3.742797
5.8414927 -1.2872906 5.5694313 12.57059 1.0939219
2.2142086 1.9181576 6.9914207 -5.888139 3.1409824
-2.003628 2.4434285 9.973139 5.03668 2.0051203
2.8615603 5.860224 2.9176188 -1.6311141 2.0292206
-4.070415 -6.831437 ]
# get the test embedding
Test embedding Result:
[ 2.5247195 5.119042 -4.335273 4.4583654 5.047907
3.5059214 1.6159848 0.49364898 -11.6899185 -3.1014526
-5.6589785 -0.42684984 2.674276 -11.937654 6.2248464
-10.776924 -5.694543 1.112041 1.5709964 1.0961034
1.3976512 2.324352 1.339981 5.279319 13.734659
-2.5753925 13.651442 -2.2357535 5.1575427 -3.251567
1.4023279 6.1191974 -6.0845175 -1.3646189 -2.6789894
-15.220778 9.779349 -9.411551 -6.388947 6.8313975
-9.245996 0.31196198 2.5509644 -4.413065 6.1649427
6.793837 2.6328635 8.620976 3.4832475 0.52491665
2.9115407 5.8392377 0.6702376 -3.2726715 2.6694255
16.91701 -5.5811176 0.23362345 -4.5573606 -11.801059
14.728292 -0.5198082 -3.999922 7.0927105 -7.0459595
-5.4389 -0.46420583 -5.1085467 10.376568 -8.889225
-0.37705845 -1.659806 2.6731026 -7.1909504 1.4608804
-2.163136 -0.17949677 4.0241547 0.11319201 0.601279
2.039692 3.1910992 -11.649526 -8.121584 -4.8707457
0.3851982 1.4231744 -2.3321972 0.99332285 14.121717
5.899413 0.7384519 -17.760096 10.555021 4.1366534
-0.3391071 -0.20792882 3.208204 0.8847948 -8.721497
-6.432868 13.006379 4.8956 -9.155822 -1.9441519
5.7815638 -2.066733 10.425042 -0.8802383 -2.4314315
-9.869258 0.35095334 -5.3549943 2.1076174 -8.290468
8.4433365 -4.689333 9.334139 -2.172678 -3.0250976
8.394216 -3.2110903 -7.93868 2.3960824 -2.3213403
-1.4963245 -3.476059 4.132903 -10.893354 4.362673
-0.45456508 10.258634 -1.1655927 -6.7799754 0.22885278
-4.399287 2.333433 -4.84745 -4.2752337 -1.3577863
-1.0685898 9.505196 7.3062205 0.08708266 12.927811
-9.57974 1.3936648 -1.9444873 5.776769 15.251903
10.6118355 -1.4903594 -9.535318 -3.6553776 -1.6699586
-0.5933151 7.600357 -4.8815503 -8.698617 -15.855757
0.25632986 -7.2235737 0.9506656 0.7128582 -9.051738
8.74869 -1.6426028 -6.5762258 2.506905 -6.7431564
5.129912 -12.189555 -3.6435068 12.068113 -6.0059533
-2.3535995 2.9014351 22.3082 -1.5563312 13.193291
2.7583609 -7.468798 1.3407065 -4.599617 -6.2345777
10.7689295 7.137627 5.099476 0.3473359 9.647881
-2.0484571 -5.8549366 ]
# get the score between enroll and test
Eembeddings Score: 0.45332613587379456
```
### 4.预训练模型
以下是 PaddleSpeech 提供的可以被命令行和 python API 使用的预训练模型列表:
| 模型 | 采样率
| :--- | :---: |
| ecapatdnn_voxceleb12 | 16k