You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/demos/speech_recognition/README_cn.md

89 lines
3.2 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

(简体中文|[English](./README.md))
# 语音识别
## 介绍
语音识别是一项用计算机程序自动转录语音的技术。
这个 demo 是一个从给定音频文件识别文本的实现,它可以通过使用 `PaddleSpeech` 的单个命令或 python 中的几行代码来实现。
## 使用方法
### 1. 安装
请看[安装文档](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install_cn.md)。
你可以从 easymediumhard 三中方式中选择一种方式安装。
### 2. 准备输入
这个 demo 的输入应该是一个 WAV 文件(`.wav`),并且采样率必须与模型的采样率相同。
可以下载此 demo 的示例音频:
```bash
wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespeech.bj.bcebos.com/PaddleAudio/en.wav
```
### 3. 使用方法
- 命令行 (推荐使用)
```bash
# 中文
paddlespeech asr --input ./zh.wav
# 英文
paddlespeech asr --model transformer_librispeech --lang en --input ./en.wav
# 中文 + 标点恢复
paddlespeech asr --input ./zh.wav | paddlespeech text --task punc
```
(如果显示 `paddlespeech-ctcdecoders` 这个 python 包没有找到的 Error没有关系这个包是非必须的。)
使用方法:
```bash
paddlespeech asr --help
```
参数:
- `input`(必须输入):用于识别的音频文件。
- `model`ASR 任务的模型,默认值:`conformer_wenetspeech`。
- `lang`:模型语言,默认值:`zh`。
- `sample_rate`:音频采样率,默认值:`16000`。
- `config`ASR 任务的参数文件,若不设置则使用预训练模型中的默认配置,默认值:`None`。
- `ckpt_path`:模型参数文件,若不设置则下载预训练模型使用,默认值:`None`。
- `yes`;不需要设置额外的参数,一旦设置了该参数,说明你默认同意程序的所有请求,其中包括自动转换输入音频的采样率。默认值:`False`。
- `device`:执行预测的设备,默认值:当前系统下 paddlepaddle 的默认 device。
输出:
```bash
# 中文
[2021-12-08 13:12:34,063] [ INFO] [utils.py] [L225] - ASR Result: 我认为跑步最重要的就是给我带来了身体健康
# 英文
[2022-01-12 11:51:10,815] [ INFO] - ASR Result: i knocked at the door on the ancient side of the building
```
- Python API
```python
import paddle
from paddlespeech.cli import ASRExecutor
asr_executor = ASRExecutor()
text = asr_executor(
model='conformer_wenetspeech',
lang='zh',
sample_rate=16000,
config=None, # Set `config` and `ckpt_path` to None to use pretrained model.
ckpt_path=None,
audio_file='./zh.wav',
force_yes=False,
device=paddle.get_device())
print('ASR Result: \n{}'.format(text))
```
输出:
```bash
ASR Result:
我认为跑步最重要的就是给我带来了身体健康
```
### 4.预训练模型
以下是 PaddleSpeech 提供的可以被命令行和 python API 使用的预训练模型列表:
| 模型 | 语言 | 采样率
| :--- | :---: | :---: |
| conformer_wenetspeech | zh | 16k
| transformer_librispeech | en | 16k
| deepspeech2offline_aishell| zh| 16k
| deepspeech2online_aishell | zh | 16k
| deepspeech2offline_librispeech | en | 16k