You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
11 KiB
11 KiB
(简体中文|English)
Speech Verification)
Introduction
Speaker Verification, refers to the problem of getting a speaker embedding from an audio.
This demo is an implementation to extract speaker embedding from a specific audio file. It can be done by a single command or a few lines in python using PaddleSpeech.
Usage
1. Installation
see installation.
You can choose one way from easy, meduim and hard to install paddlespeech.
2. Prepare Input File
The input of this demo should be a WAV file(.wav), and the sample rate must be the same as the model.
Here are sample files for this demo that can be downloaded:
wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
3. Usage
-
Command Line(Recommended)
paddlespeech vector --task spk --input 85236145389.wav echo -e "demo1 85236145389.wav" > vec.job paddlespeech vector --task spk --input vec.job echo -e "demo2 85236145389.wav \n demo3 85236145389.wav" | paddlespeech vector --task spk paddlespeech vector --task score --input "./85236145389.wav ./123456789.wav" echo -e "demo4 85236145389.wav 85236145389.wav \n demo5 85236145389.wav 123456789.wav" > vec.job paddlespeech vector --task score --input vec.jobUsage:
paddlespeech vector --helpArguments:
input(required): Audio file to recognize.task(required): Specifyvectortask. Defaultspk。model: Model type of vector task. Default:ecapatdnn_voxceleb12.sample_rate: Sample rate of the model. Default:16000.config: Config of vector task. Use pretrained model when it is None. Default:None.ckpt_path: Model checkpoint. Use pretrained model when it is None. Default:None.device: Choose device to execute model inference. Default: default device of paddlepaddle in current environment.
Output:
demo [ 1.4217498 5.626253 -5.342073 1.1773866 3.308055 1.756596 5.167894 10.80636 -3.8226728 -5.6141334 2.623845 -0.8072968 1.9635103 -7.3128724 0.01103897 -9.723131 0.6619743 -6.976803 10.213478 7.494748 2.9105635 3.8949256 3.7999806 7.1061673 16.905321 -7.1493764 8.733103 3.4230042 -4.831653 -11.403367 11.232214 7.1274667 -4.2828417 2.452362 -5.130748 -18.177666 -2.6116815 -11.000337 -6.7314315 1.6564683 0.7618269 1.1253023 -2.083836 4.725744 -8.782597 -3.539873 3.814236 5.1420674 2.162061 4.096431 -6.4162116 12.747448 1.9429878 -15.152943 6.417416 16.097002 -9.716668 -1.9920526 -3.3649497 -1.871939 11.567354 3.69788 11.258265 7.442363 9.183411 4.5281515 -1.2417862 4.3959084 6.6727695 5.8898783 7.627124 -0.66919386 -11.889693 -9.208865 -7.4274073 -3.7776625 6.917234 -9.848748 -2.0944717 -5.135116 0.49563864 9.317534 -5.9141874 -1.8098574 -0.11738578 -7.169265 -1.0578263 -5.7216787 -5.1173844 16.137651 -4.473626 7.6624317 -0.55381083 9.631587 -6.4704556 -8.548508 4.3716145 -0.79702514 4.478997 -2.9758704 3.272176 2.8382776 5.134597 -9.190781 -0.5657382 -4.8745747 2.3165567 -5.984303 -2.1798875 0.35541576 -0.31784213 9.493548 2.1144536 4.358092 -12.089823 8.451689 -7.925461 4.6242585 4.4289427 18.692003 -2.6204622 -5.149185 -0.35821092 8.488551 4.981496 -9.32683 -2.2544234 6.6417594 1.2119585 10.977129 16.555033 3.3238444 9.551863 -1.6676947 -0.79539716 -8.605674 -0.47356385 2.6741948 -5.359179 -2.6673796 0.66607 15.443222 4.740594 -3.4725387 11.592567 -2.054497 1.7361217 -8.265324 -9.30447 5.4068313 -1.5180256 -7.746615 -6.089606 0.07112726 -0.34904733 -8.649895 -9.998958 -2.564841 -0.53999114 2.601808 -0.31927416 -1.8815292 -2.07215 -3.4105783 -8.2998085 1.483641 -15.365992 -8.288208 3.8847756 -3.4876456 7.3629923 0.4657332 3.132599 12.438889 -1.8337058 4.532936 2.7264361 10.145339 -6.521951 2.897153 -3.3925855 5.079156 7.759716 4.677565 5.8457737 2.402413 7.7071047 3.9711342 -6.390043 6.1268735 -3.7760346 -11.118123 ] -
Python API
import paddle from paddlespeech.cli import VectorExecutor vector_executor = VectorExecutor() audio_emb = vector_executor( model='ecapatdnn_voxceleb12', sample_rate=16000, config=None, # Set `config` and `ckpt_path` to None to use pretrained model. ckpt_path=None, audio_file='./85236145389.wav', device=paddle.get_device()) print('Audio embedding Result: \n{}'.format(audio_emb)) test_emb = vector_executor( model='ecapatdnn_voxceleb12', sample_rate=16000, config=None, # Set `config` and `ckpt_path` to None to use pretrained model. ckpt_path=None, audio_file='./123456789.wav', device=paddle.get_device()) print('Test embedding Result: \n{}'.format(test_emb)) # score range [0, 1] score = vector_executor.get_embeddings_score(audio_emb, test_emb) print(f"Eembeddings Score: {score}")Output:
# Vector Result: Audio embedding Result: [ 1.4217498 5.626253 -5.342073 1.1773866 3.308055 1.756596 5.167894 10.80636 -3.8226728 -5.6141334 2.623845 -0.8072968 1.9635103 -7.3128724 0.01103897 -9.723131 0.6619743 -6.976803 10.213478 7.494748 2.9105635 3.8949256 3.7999806 7.1061673 16.905321 -7.1493764 8.733103 3.4230042 -4.831653 -11.403367 11.232214 7.1274667 -4.2828417 2.452362 -5.130748 -18.177666 -2.6116815 -11.000337 -6.7314315 1.6564683 0.7618269 1.1253023 -2.083836 4.725744 -8.782597 -3.539873 3.814236 5.1420674 2.162061 4.096431 -6.4162116 12.747448 1.9429878 -15.152943 6.417416 16.097002 -9.716668 -1.9920526 -3.3649497 -1.871939 11.567354 3.69788 11.258265 7.442363 9.183411 4.5281515 -1.2417862 4.3959084 6.6727695 5.8898783 7.627124 -0.66919386 -11.889693 -9.208865 -7.4274073 -3.7776625 6.917234 -9.848748 -2.0944717 -5.135116 0.49563864 9.317534 -5.9141874 -1.8098574 -0.11738578 -7.169265 -1.0578263 -5.7216787 -5.1173844 16.137651 -4.473626 7.6624317 -0.55381083 9.631587 -6.4704556 -8.548508 4.3716145 -0.79702514 4.478997 -2.9758704 3.272176 2.8382776 5.134597 -9.190781 -0.5657382 -4.8745747 2.3165567 -5.984303 -2.1798875 0.35541576 -0.31784213 9.493548 2.1144536 4.358092 -12.089823 8.451689 -7.925461 4.6242585 4.4289427 18.692003 -2.6204622 -5.149185 -0.35821092 8.488551 4.981496 -9.32683 -2.2544234 6.6417594 1.2119585 10.977129 16.555033 3.3238444 9.551863 -1.6676947 -0.79539716 -8.605674 -0.47356385 2.6741948 -5.359179 -2.6673796 0.66607 15.443222 4.740594 -3.4725387 11.592567 -2.054497 1.7361217 -8.265324 -9.30447 5.4068313 -1.5180256 -7.746615 -6.089606 0.07112726 -0.34904733 -8.649895 -9.998958 -2.564841 -0.53999114 2.601808 -0.31927416 -1.8815292 -2.07215 -3.4105783 -8.2998085 1.483641 -15.365992 -8.288208 3.8847756 -3.4876456 7.3629923 0.4657332 3.132599 12.438889 -1.8337058 4.532936 2.7264361 10.145339 -6.521951 2.897153 -3.3925855 5.079156 7.759716 4.677565 5.8457737 2.402413 7.7071047 3.9711342 -6.390043 6.1268735 -3.7760346 -11.118123 ] # get the test embedding Test embedding Result: [ -1.902964 2.0690894 -8.034194 3.5472693 0.18089125 6.9085927 1.4097427 -1.9487704 -10.021278 -0.20755845 -8.04332 4.344489 2.3200977 -14.306299 5.184692 -11.55602 -3.8497238 0.6444722 1.2833948 2.6766639 0.5878921 0.7946299 1.7207596 2.5791872 14.998469 -1.3385371 15.031221 -0.8006958 1.99287 -9.52007 2.435466 4.003221 -4.33817 -4.898601 -5.304714 -18.033886 10.790787 -12.784645 -5.641755 2.9761686 -10.566622 1.4839455 6.152458 -5.7195854 2.8603241 6.112133 8.489869 5.5958056 1.2836679 -1.2293907 0.89927405 7.0288725 -2.854029 -0.9782962 5.8255906 14.905906 -5.025907 0.7866458 -4.2444224 -16.354029 10.521315 0.9604709 -3.3257897 7.144871 -13.592733 -8.568869 -1.7953678 0.26313916 10.916714 -6.9374123 1.857403 -6.2746415 2.8154466 -7.2338667 -2.293357 -0.05452765 5.4287076 5.0849075 -6.690375 -1.6183422 3.654291 0.94352573 -9.200294 -5.4749465 -3.5235846 1.3420814 4.240421 -2.772944 -2.8451524 16.311104 4.2969875 -1.762936 -12.5758915 8.595198 -0.8835239 -1.5708797 1.568961 1.1413603 3.5032008 -0.45251232 -6.786333 16.89443 5.3366146 -8.789056 0.6355629 3.2579517 -3.328322 7.5969577 0.66025066 -6.550468 -9.148656 2.020372 -0.4615173 1.1965656 -3.8764873 11.6562195 -6.0750933 12.182899 3.2218833 0.81969476 5.570001 -3.8459578 -7.205299 7.9262037 -7.6611166 -5.249467 -2.2671914 7.2658715 -13.298164 4.821147 -2.7263982 11.691089 -3.8918593 -2.838112 -1.0336838 -3.8034165 2.8536487 -5.60398 -1.1972581 1.3455094 -3.4903061 2.2408795 5.5010734 -3.970756 11.99696 -7.8858757 0.43160373 -5.5059714 4.3426995 16.322706 11.635366 0.72157705 -9.245714 -3.91465 -4.449838 -1.5716927 7.713747 -2.2430465 -6.198303 -13.481864 2.8156567 -5.7812386 5.1456156 2.7289324 -14.505571 13.270688 3.448231 -7.0659585 4.5886116 -4.466099 -0.296428 -11.463529 -2.6076477 14.110243 -6.9725137 -1.9962958 2.7119343 19.391657 0.01961198 14.607133 -1.6695905 -4.391516 1.3131028 -6.670972 -5.888604 12.0612335 5.9285784 3.3715196 1.492534 10.723728 -0.95514804 -12.085431 ] # get the score between enroll and test Eembeddings Score: 0.4292638301849365
4.Pretrained Models
Here is a list of pretrained models released by PaddleSpeech that can be used by command and python API:
| Model | Sample Rate |
|---|---|
| ecapatdnn_voxceleb12 | 16k |