You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/speechx/examples/u2pp_ol/wenetspeech/README.md

79 lines
2.0 KiB

# U2/U2++ Streaming ASR
A C++ deployment example for `PaddleSpeech/examples/wenetspeech/asr1` recipe. The model is static model from `export`, how to export model please see [here](../../../../examples/wenetspeech/asr1/). If you want using exported model, `run.sh` will download it, for the model link please see `run.sh`.
This example will demonstrate how to using the u2/u2++ model to recognize `wav` and compute `CER`. We using AISHELL-1 as test data.
## Testing with Aishell Test Data
## Source path.sh
```bash
. path.sh
```
SpeechX bins is under `echo $SPEECHX_BUILD`, more info please see `path.sh`.
### Download dataset and model
```
./run.sh --stop_stage 0
```
### process `cmvn` and compute feature
```bash
./run.sh --stage 1 --stop_stage 1
```
If you only want to convert `cmvn` file format, can using this cmd:
```bash
./local/feat.sh --stage 1 --stop_stage 1
```
### Decoding using `feature` input
```
./run.sh --stage 2 --stop_stage 2
```
### Decoding using `wav` input
```
./run.sh --stage 3 --stop_stage 3
```
This stage using `u2_recognizer_main` to recognize wav file.
The input is `scp` file which look like this:
```text
# head data/split1/1/aishell_test.scp
BAC009S0764W0121 /workspace/PaddleSpeech/speechx/examples/u2pp_ol/wenetspeech/data/test/S0764/BAC009S0764W0121.wav
BAC009S0764W0122 /workspace/PaddleSpeech/speechx/examples/u2pp_ol/wenetspeech/data/test/S0764/BAC009S0764W0122.wav
...
BAC009S0764W0125 /workspace/PaddleSpeech/speechx/examples/u2pp_ol/wenetspeech/data/test/S0764/BAC009S0764W0125.wav
```
If you want to recognize one wav, you can make `scp` file like this:
```text
key path/to/wav/file
```
Then specify `--wav_rspecifier=` param for `u2_recognizer_main` bin. For other flags meaning, please see `help`:
```bash
u2_recognizer_main --help
```
The exmaple using `u2_recgonize_main` bin please see `local/recognizer.sh`.
### Decoding with `wav` using quant model
`local/recognizer_quant.sh` is same to `local/recognizer.sh`, but using quanted model.
## Results
Please see [here](./RESULTS.md).