You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/README.md

719 lines
30 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

([简体中文](./README_cn.md)|English)
<p align="center">
<img src="./docs/images/PaddleSpeech_logo.png" />
</p>
<p align="center">
<a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-red.svg"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleSpeech?color=ffa"></a>
<a href="support os"><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
<a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/graphs/contributors"><img src="https://img.shields.io/github/contributors/PaddlePaddle/PaddleSpeech?color=9ea"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/commits"><img src="https://img.shields.io/github/commit-activity/m/PaddlePaddle/PaddleSpeech?color=3af"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/issues"><img src="https://img.shields.io/github/issues/PaddlePaddle/PaddleSpeech?color=9cc"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleSpeech?color=ccf"></a>
<a href="=https://pypi.org/project/paddlespeech/"><img src="https://img.shields.io/pypi/dm/PaddleSpeech"></a>
<a href="=https://pypi.org/project/paddlespeech/"><img src="https://static.pepy.tech/badge/paddlespeech"></a>
<a href="https://huggingface.co/spaces"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"></a>
</p>
<div align="center">
<h3>
| <a href="#quick-start"> Quick Start </a>
| <a href="#quick-start-server"> Quick Start Server </a>
| <a href="#quick-start-streaming-server"> Quick Start Streaming Server</a>
|
</br>
| <a href="#documents"> Documents </a>
| <a href="#model-list"> Models List </a>
|
</h3>
</div>
**PaddleSpeech** is an open-source toolkit on [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) platform for a variety of critical tasks in speech and audio, with the state-of-art and influential models.
##### Speech Recognition
<div align = "center">
<table style="width:100%">
<thead>
<tr>
<th> Input Audio </th>
<th width="550"> Recognition Result </th>
</tr>
</thead>
<tbody>
<tr>
<td align = "center">
<a href="https://paddlespeech.bj.bcebos.com/PaddleAudio/en.wav" rel="nofollow">
<img align="center" src="./docs/images/audio_icon.png" width="200 style="max-width: 100%;"></a><br>
</td>
<td >I knocked at the door on the ancient side of the building.</td>
</tr>
<tr>
<td align = "center">
<a href="https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav" rel="nofollow">
<img align="center" src="./docs/images/audio_icon.png" width="200" style="max-width: 100%;"></a><br>
</td>
<td>我认为跑步最重要的就是给我带来了身体健康。</td>
</tr>
</tbody>
</table>
</div>
##### Speech Translation (English to Chinese)
<div align = "center">
<table style="width:100%">
<thead>
<tr>
<th> Input Audio </th>
<th width="550"> Translations Result </th>
</tr>
</thead>
<tbody>
<tr>
<td align = "center">
<a href="https://paddlespeech.bj.bcebos.com/PaddleAudio/en.wav" rel="nofollow">
<img align="center" src="./docs/images/audio_icon.png" width="200 style="max-width: 100%;"></a><br>
</td>
<td >我 在 这栋 建筑 的 古老 门上 敲门。</td>
</tr>
</tbody>
</table>
</div>
##### Text-to-Speech
<div align = "center">
<table style="width:100%">
<thead>
<tr>
<th width="550" > Input Text</th>
<th>Synthetic Audio</th>
</tr>
</thead>
<tbody>
<tr>
<td >Life was like a box of chocolates, you never know what you're gonna get.</td>
<td align = "center">
<a href="https://paddlespeech.bj.bcebos.com/Parakeet/docs/demos/tacotron2_ljspeech_waveflow_samples_0.2/sentence_1.wav" rel="nofollow">
<img align="center" src="./docs/images/audio_icon.png" width="200" style="max-width: 100%;"></a><br>
</td>
</tr>
<tr>
<td >早上好今天是2020/10/29最低温度是-3°C。</td>
<td align = "center">
<a href="https://paddlespeech.bj.bcebos.com/Parakeet/docs/demos/parakeet_espnet_fs2_pwg_demo/tn_g2p/parakeet/001.wav" rel="nofollow">
<img align="center" src="./docs/images/audio_icon.png" width="200" style="max-width: 100%;"></a><br>
</td>
</tr>
<tr>
<td >季姬寂,集鸡,鸡即棘鸡。棘鸡饥叽,季姬及箕稷济鸡。鸡既济,跻姬笈,季姬忌,急咭鸡,鸡急,继圾几,季姬急,即籍箕击鸡,箕疾击几伎,伎即齑,鸡叽集几基,季姬急极屐击鸡,鸡既殛,季姬激,即记《季姬击鸡记》。</td>
<td align = "center">
<a href="https://paddlespeech.bj.bcebos.com/Parakeet/docs/demos/jijiji.wav" rel="nofollow">
<img align="center" src="./docs/images/audio_icon.png" width="200" style="max-width: 100%;"></a><br>
</td>
</tr>
</tbody>
</table>
</div>
For more synthesized audios, please refer to [PaddleSpeech Text-to-Speech samples](https://paddlespeech.readthedocs.io/en/latest/tts/demo.html).
##### Punctuation Restoration
<div align = "center">
<table style="width:100%">
<thead>
<tr>
<th width="390"> Input Text </th>
<th width="390"> Output Text </th>
</tr>
</thead>
<tbody>
<tr>
<td>今天的天气真不错啊你下午有空吗我想约你一起去吃饭</td>
<td>今天的天气真不错啊!你下午有空吗?我想约你一起去吃饭。</td>
</tr>
</tbody>
</table>
</div>
### Features
Via the easy-to-use, efficient, flexible and scalable implementation, our vision is to empower both industrial application and academic research, including training, inference & testing modules, and deployment process. To be more specific, this toolkit features at:
- 📦 **Ease of Use**: low barriers to install, and [CLI](#quick-start) is available to quick-start your journey.
- 🏆 **Align to the State-of-the-Art**: we provide high-speed and ultra-lightweight models, and also cutting-edge technology.
- 💯 **Rule-based Chinese frontend**: our frontend contains Text Normalization and Grapheme-to-Phoneme (G2P, including Polyphone and Tone Sandhi). Moreover, we use self-defined linguistic rules to adapt Chinese context.
- **Varieties of Functions that Vitalize both Industrial and Academia**:
- 🛎️ *Implementation of critical audio tasks*: this toolkit contains audio functions like Audio Classification, Speech Translation, Automatic Speech Recognition, Text-to-Speech Synthesis, etc.
- 🔬 *Integration of mainstream models and datasets*: the toolkit implements modules that participate in the whole pipeline of the speech tasks, and uses mainstream datasets like LibriSpeech, LJSpeech, AIShell, CSMSC, etc. See also [model list](#model-list) for more details.
- 🧩 *Cascaded models application*: as an extension of the typical traditional audio tasks, we combine the workflows of the aforementioned tasks with other fields like Natural language processing (NLP) and Computer Vision (CV).
### 🔥 Hot Activities
<!---
2021.12.14: We would like to have an online courses to introduce basics and research of speech, as well as code practice with `paddlespeech`. Please pay attention to our [Calendar](https://www.paddlepaddle.org.cn/live).
--->
- 2021.12.21~12.24
4 Days Live Courses: Depth interpretation of PaddleSpeech!
**Courses videos and related materials: https://aistudio.baidu.com/aistudio/education/group/info/25130**
### Recent Update
- 👏🏻 2022.04.28: PaddleSpeech Streaming Server is available for Automatic Speech Recognition and Text-to-Speech.
- 👏🏻 2022.03.28: PaddleSpeech Server is available for Audio Classification, Automatic Speech Recognition and Text-to-Speech.
- 👏🏻 2022.03.28: PaddleSpeech CLI is available for Speaker Verification.
- 🤗 2021.12.14: Our PaddleSpeech [ASR](https://huggingface.co/spaces/KPatrick/PaddleSpeechASR) and [TTS](https://huggingface.co/spaces/KPatrick/PaddleSpeechTTS) Demos on Hugging Face Spaces are available!
- 👏🏻 2021.12.10: PaddleSpeech CLI is available for Audio Classification, Automatic Speech Recognition, Speech Translation (English to Chinese) and Text-to-Speech.
### Community
- Scan the QR code below with your Wechat (reply【语音】after your friend's application is approved), you can access to official technical exchange group. Look forward to your participation.
<div align="center">
<img src="https://raw.githubusercontent.com/yt605155624/lanceTest/main/images/wechat_4.jpg" width = "300" />
</div>
## Installation
We strongly recommend our users to install PaddleSpeech in **Linux** with *python>=3.7*.
Up to now, **Linux** supports CLI for the all our tasks, **Mac OSX** and **Windows** only supports PaddleSpeech CLI for Audio Classification, Speech-to-Text and Text-to-Speech. To install `PaddleSpeech`, please see [installation](./docs/source/install.md).
<a name="quickstart"></a>
## Quick Start
Developers can have a try of our models with [PaddleSpeech Command Line](./paddlespeech/cli/README.md). Change `--input` to test your own audio/text.
**Audio Classification**
```shell
paddlespeech cls --input input.wav
```
**Speaker Verification**
```
paddlespeech vector --task spk --input input_16k.wav
```
**Automatic Speech Recognition**
```shell
paddlespeech asr --lang zh --input input_16k.wav
```
- web demo for Automatic Speech Recognition is integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See Demo: [ASR Demo](https://huggingface.co/spaces/KPatrick/PaddleSpeechASR)
**Speech Translation** (English to Chinese)
(not support for Mac and Windows now)
```shell
paddlespeech st --input input_16k.wav
```
**Text-to-Speech**
```shell
paddlespeech tts --input "你好,欢迎使用飞桨深度学习框架!" --output output.wav
```
- web demo for Text to Speech is integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See Demo: [TTS Demo](https://huggingface.co/spaces/KPatrick/PaddleSpeechTTS)
**Text Postprocessing**
- Punctuation Restoration
```bash
paddlespeech text --task punc --input 今天的天气真不错啊你下午有空吗我想约你一起去吃饭
```
**Batch Process**
```
echo -e "1 欢迎光临。\n2 谢谢惠顾。" | paddlespeech tts
```
**Shell Pipeline**
- ASR + Punctuation Restoration
```
paddlespeech asr --input ./zh.wav | paddlespeech text --task punc
```
For more command lines, please see: [demos](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/demos)
If you want to try more functions like training and tuning, please have a look at [Speech-to-Text Quick Start](./docs/source/asr/quick_start.md) and [Text-to-Speech Quick Start](./docs/source/tts/quick_start.md).
<a name="quickstartserver"></a>
## Quick Start Server
Developers can have a try of our speech server with [PaddleSpeech Server Command Line](./paddlespeech/server/README.md).
**Start server**
```shell
paddlespeech_server start --config_file ./paddlespeech/server/conf/application.yaml
```
**Access Speech Recognition Services**
```shell
paddlespeech_client asr --server_ip 127.0.0.1 --port 8090 --input input_16k.wav
```
**Access Text to Speech Services**
```shell
paddlespeech_client tts --server_ip 127.0.0.1 --port 8090 --input "您好,欢迎使用百度飞桨语音合成服务。" --output output.wav
```
**Access Audio Classification Services**
```shell
paddlespeech_client cls --server_ip 127.0.0.1 --port 8090 --input input.wav
```
For more information about server command lines, please see: [speech server demos](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/demos/speech_server)
<a name="quickstartstreamingserver"></a>
## Quick Start Streaming Server
Developers can have a try of [streaming asr](./demos/streaming_asr_server/README.md) and [streaming tts](./demos/streaming_tts_server/README.md) server.
**Start Streaming Speech Recognition Server**
```
paddlespeech_server start --config_file ./demos/streaming_asr_server/conf/application.yaml
```
**Access Streaming Speech Recognition Services**
```
paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8090 --input input_16k.wav
```
**Start Streaming Text to Speech Server**
```
paddlespeech_server start --config_file ./demos/streaming_tts_server/conf/tts_online_application.yaml
```
**Access Streaming Text to Speech Services**
```
paddlespeech_client tts_online --server_ip 127.0.0.1 --port 8092 --protocol http --input "您好,欢迎使用百度飞桨语音合成服务。" --output output.wav
```
For more information please see: [streaming asr](./demos/streaming_asr_server/README.md) and [streaming tts](./demos/streaming_tts_server/README.md)
<a name="ModelList"></a>
## Model List
PaddleSpeech supports a series of most popular models. They are summarized in [released models](./docs/source/released_model.md) and attached with available pretrained models.
<a name="SpeechToText"></a>
**Speech-to-Text** contains *Acoustic Model*, *Language Model*, and *Speech Translation*, with the following details:
<table style="width:100%">
<thead>
<tr>
<th>Speech-to-Text Module Type</th>
<th>Dataset</th>
<th>Model Type</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="4">Speech Recogination</td>
<td rowspan="2" >Aishell</td>
<td >DeepSpeech2 RNN + Conv based Models</td>
<td>
<a href = "./examples/aishell/asr0">deepspeech2-aishell</a>
</td>
</tr>
<tr>
<td>Transformer based Attention Models </td>
<td>
<a href = "./examples/aishell/asr1">u2.transformer.conformer-aishell</a>
</td>
</tr>
<tr>
<td> Librispeech</td>
<td>Transformer based Attention Models </td>
<td>
<a href = "./examples/librispeech/asr0">deepspeech2-librispeech</a> / <a href = "./examples/librispeech/asr1">transformer.conformer.u2-librispeech</a> / <a href = "./examples/librispeech/asr2">transformer.conformer.u2-kaldi-librispeech</a>
</td>
</td>
</tr>
<tr>
<td>TIMIT</td>
<td>Unified Streaming & Non-streaming Two-pass</td>
<td>
<a href = "./examples/timit/asr1"> u2-timit</a>
</td>
</tr>
<tr>
<td>Alignment</td>
<td>THCHS30</td>
<td>MFA</td>
<td>
<a href = ".examples/thchs30/align0">mfa-thchs30</a>
</td>
</tr>
<tr>
<td rowspan="1">Language Model</td>
<td colspan = "2">Ngram Language Model</td>
<td>
<a href = "./examples/other/ngram_lm">kenlm</a>
</td>
</tr>
<tr>
<td rowspan="2">Speech Translation (English to Chinese)</td>
<td rowspan="2">TED En-Zh</td>
<td>Transformer + ASR MTL</td>
<td>
<a href = "./examples/ted_en_zh/st0">transformer-ted</a>
</td>
</tr>
<tr>
<td>FAT + Transformer + ASR MTL</td>
<td>
<a href = "./examples/ted_en_zh/st1">fat-st-ted</a>
</td>
</tr>
</tbody>
</table>
<a name="TextToSpeech"></a>
**Text-to-Speech** in PaddleSpeech mainly contains three modules: *Text Frontend*, *Acoustic Model* and *Vocoder*. Acoustic Model and Vocoder models are listed as follow:
<table>
<thead>
<tr>
<th> Text-to-Speech Module Type </th>
<th> Model Type </th>
<th> Dataset </th>
<th> Link </th>
</tr>
</thead>
<tbody>
<tr>
<td> Text Frontend </td>
<td colspan="2"> &emsp; </td>
<td>
<a href = "./examples/other/tn">tn</a> / <a href = "./examples/other/g2p">g2p</a>
</td>
</tr>
<tr>
<td rowspan="4">Acoustic Model</td>
<td>Tacotron2</td>
<td>LJSpeech / CSMSC</td>
<td>
<a href = "./examples/ljspeech/tts0">tacotron2-ljspeech</a> / <a href = "./examples/csmsc/tts0">tacotron2-csmsc</a>
</td>
</tr>
<tr>
<td>Transformer TTS</td>
<td>LJSpeech</td>
<td>
<a href = "./examples/ljspeech/tts1">transformer-ljspeech</a>
</td>
</tr>
<tr>
<td>SpeedySpeech</td>
<td>CSMSC</td>
<td >
<a href = "./examples/csmsc/tts2">speedyspeech-csmsc</a>
</td>
</tr>
<tr>
<td>FastSpeech2</td>
<td>LJSpeech / VCTK / CSMSC / AISHELL-3</td>
<td>
<a href = "./examples/ljspeech/tts3">fastspeech2-ljspeech</a> / <a href = "./examples/vctk/tts3">fastspeech2-vctk</a> / <a href = "./examples/csmsc/tts3">fastspeech2-csmsc</a> / <a href = "./examples/aishell3/tts3">fastspeech2-aishell3</a>
</td>
</tr>
<tr>
<td rowspan="6">Vocoder</td>
<td >WaveFlow</td>
<td >LJSpeech</td>
<td>
<a href = "./examples/ljspeech/voc0">waveflow-ljspeech</a>
</td>
</tr>
<tr>
<td >Parallel WaveGAN</td>
<td >LJSpeech / VCTK / CSMSC / AISHELL-3</td>
<td>
<a href = "./examples/ljspeech/voc1">PWGAN-ljspeech</a> / <a href = "./examples/vctk/voc1">PWGAN-vctk</a> / <a href = "./examples/csmsc/voc1">PWGAN-csmsc</a> / <a href = "./examples/aishell3/voc1">PWGAN-aishell3</a>
</td>
</tr>
<tr>
<td >Multi Band MelGAN</td>
<td >CSMSC</td>
<td>
<a href = "./examples/csmsc/voc3">Multi Band MelGAN-csmsc</a>
</td>
</tr>
<tr>
<td >Style MelGAN</td>
<td >CSMSC</td>
<td>
<a href = "./examples/csmsc/voc4">Style MelGAN-csmsc</a>
</td>
</tr>
<tr>
<td >HiFiGAN</td>
<td >LJSpeech / VCTK / CSMSC / AISHELL-3</td>
<td>
<a href = "./examples/ljspeech/voc5">HiFiGAN-ljspeech</a> / <a href = "./examples/vctk/voc5">HiFiGAN-vctk</a> / <a href = "./examples/csmsc/voc5">HiFiGAN-csmsc</a> / <a href = "./examples/aishell3/voc5">HiFiGAN-aishell3</a>
</td>
</tr>
<tr>
<td >WaveRNN</td>
<td >CSMSC</td>
<td>
<a href = "./examples/csmsc/voc6">WaveRNN-csmsc</a>
</td>
</tr>
<tr>
<td rowspan="3">Voice Cloning</td>
<td>GE2E</td>
<td >Librispeech, etc.</td>
<td>
<a href = "./examples/other/ge2e">ge2e</a>
</td>
</tr>
<tr>
<td>GE2E + Tacotron2</td>
<td>AISHELL-3</td>
<td>
<a href = "./examples/aishell3/vc0">ge2e-tacotron2-aishell3</a>
</td>
</tr>
<tr>
<td>GE2E + FastSpeech2</td>
<td>AISHELL-3</td>
<td>
<a href = "./examples/aishell3/vc1">ge2e-fastspeech2-aishell3</a>
</td>
</tr>
</tbody>
</table>
<a name="AudioClassification"></a>
**Audio Classification**
<table style="width:100%">
<thead>
<tr>
<th> Task </th>
<th> Dataset </th>
<th> Model Type </th>
<th> Link </th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio Classification</td>
<td>ESC-50</td>
<td>PANN</td>
<td>
<a href = "./examples/esc50/cls0">pann-esc50</a>
</td>
</tr>
</tbody>
</table>
<a name="SpeakerVerification"></a>
**Speaker Verification**
<table style="width:100%">
<thead>
<tr>
<th> Task </th>
<th> Dataset </th>
<th> Model Type </th>
<th> Link </th>
</tr>
</thead>
<tbody>
<tr>
<td>Speaker Verification</td>
<td>VoxCeleb12</td>
<td>ECAPA-TDNN</td>
<td>
<a href = "./examples/voxceleb/sv0">ecapa-tdnn-voxceleb12</a>
</td>
</tr>
</tbody>
</table>
<a name="PunctuationRestoration"></a>
**Punctuation Restoration**
<table style="width:100%">
<thead>
<tr>
<th> Task </th>
<th> Dataset </th>
<th> Model Type </th>
<th> Link </th>
</tr>
</thead>
<tbody>
<tr>
<td>Punctuation Restoration</td>
<td>IWLST2012_zh</td>
<td>Ernie Linear</td>
<td>
<a href = "./examples/iwslt2012/punc0">iwslt2012-punc0</a>
</td>
</tr>
</tbody>
</table>
## Documents
Normally, [Speech SoTA](https://paperswithcode.com/area/speech), [Audio SoTA](https://paperswithcode.com/area/audio) and [Music SoTA](https://paperswithcode.com/area/music) give you an overview of the hot academic topics in the related area. To focus on the tasks in PaddleSpeech, you will find the following guidelines are helpful to grasp the core ideas.
- [Installation](./docs/source/install.md)
- [Quick Start](#quickstart)
- [Some Demos](./demos/README.md)
- Tutorials
- [Automatic Speech Recognition](./docs/source/asr/quick_start.md)
- [Introduction](./docs/source/asr/models_introduction.md)
- [Data Preparation](./docs/source/asr/data_preparation.md)
- [Ngram LM](./docs/source/asr/ngram_lm.md)
- [Text-to-Speech](./docs/source/tts/quick_start.md)
- [Introduction](./docs/source/tts/models_introduction.md)
- [Advanced Usage](./docs/source/tts/advanced_usage.md)
- [Chinese Rule Based Text Frontend](./docs/source/tts/zh_text_frontend.md)
- [Test Audio Samples](https://paddlespeech.readthedocs.io/en/latest/tts/demo.html)
- Speaker Verification
- [Audio Searching](./demos/audio_searching/README.md)
- [Speaker Verification](./demos/speaker_verification/README.md)
- [Audio Classification](./demos/audio_tagging/README.md)
- [Speech Translation](./demos/speech_translation/README.md)
- [Speech Server](./demos/speech_server/README.md)
- [Released Models](./docs/source/released_model.md)
- [Speech-to-Text](#SpeechToText)
- [Text-to-Speech](#TextToSpeech)
- [Audio Classification](#AudioClassification)
- [Speaker Verification](#SpeakerVerification)
- [Punctuation Restoration](#PunctuationRestoration)
- [Community](#Community)
- [Welcome to contribute](#contribution)
- [License](#License)
The Text-to-Speech module is originally called [Parakeet](https://github.com/PaddlePaddle/Parakeet), and now merged with this repository. If you are interested in academic research about this task, please see [TTS research overview](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/docs/source/tts#overview). Also, [this document](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/tts/models_introduction.md) is a good guideline for the pipeline components.
## ⭐ Examples
- **[PaddleBoBo](https://github.com/JiehangXie/PaddleBoBo): Use PaddleSpeech TTS to generate virtual human voice.**
<div align="center"><a href="https://www.bilibili.com/video/BV1cL411V71o?share_source=copy_web"><img src="https://ai-studio-static-online.cdn.bcebos.com/06fd746ab32042f398fb6f33f873e6869e846fe63c214596ae37860fe8103720" / width="500px"></a></div>
- [PaddleSpeech Demo Video](https://paddlespeech.readthedocs.io/en/latest/demo_video.html)
- **[VTuberTalk](https://github.com/jerryuhoo/VTuberTalk): Use PaddleSpeech TTS and ASR to clone voice from videos.**
<div align="center">
<img src="https://raw.githubusercontent.com/jerryuhoo/VTuberTalk/main/gui/gui.png" width = "500px" />
</div>
## Citation
To cite PaddleSpeech for research, please use the following format.
```tex
@inproceedings{zhang2022paddlespeech,
title = {PaddleSpeech: An Easy-to-Use All-in-One Speech Toolkit},
author = {Hui Zhang, Tian Yuan, Junkun Chen, Xintong Li, Renjie Zheng, Yuxin Huang, Xiaojie Chen, Enlei Gong, Zeyu Chen, Xiaoguang Hu, dianhai yu, Yanjun Ma, Liang Huang},
booktitle = {Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations},
year = {2022},
publisher = {Association for Computational Linguistics},
}
@inproceedings{zheng2021fused,
title={Fused acoustic and text encoding for multimodal bilingual pretraining and speech translation},
author={Zheng, Renjie and Chen, Junkun and Ma, Mingbo and Huang, Liang},
booktitle={International Conference on Machine Learning},
pages={12736--12746},
year={2021},
organization={PMLR}
}
```
<a name="contribution"></a>
## Contribute to PaddleSpeech
You are warmly welcome to submit questions in [discussions](https://github.com/PaddlePaddle/PaddleSpeech/discussions) and bug reports in [issues](https://github.com/PaddlePaddle/PaddleSpeech/issues)! Also, we highly appreciate if you are willing to contribute to this project!
### Contributors
<p align="center">
<a href="https://github.com/zh794390558"><img src="https://avatars.githubusercontent.com/u/3038472?v=4" width=75 height=75></a>
<a href="https://github.com/Jackwaterveg"><img src="https://avatars.githubusercontent.com/u/87408988?v=4" width=75 height=75></a>
<a href="https://github.com/yt605155624"><img src="https://avatars.githubusercontent.com/u/24568452?v=4" width=75 height=75></a>
<a href="https://github.com/kuke"><img src="https://avatars.githubusercontent.com/u/3064195?v=4" width=75 height=75></a>
<a href="https://github.com/xinghai-sun"><img src="https://avatars.githubusercontent.com/u/7038341?v=4" width=75 height=75></a>
<a href="https://github.com/pkuyym"><img src="https://avatars.githubusercontent.com/u/5782283?v=4" width=75 height=75></a>
<a href="https://github.com/KPatr1ck"><img src="https://avatars.githubusercontent.com/u/22954146?v=4" width=75 height=75></a>
<a href="https://github.com/LittleChenCc"><img src="https://avatars.githubusercontent.com/u/10339970?v=4" width=75 height=75></a>
<a href="https://github.com/745165806"><img src="https://avatars.githubusercontent.com/u/20623194?v=4" width=75 height=75></a>
<a href="https://github.com/Mingxue-Xu"><img src="https://avatars.githubusercontent.com/u/92848346?v=4" width=75 height=75></a>
<a href="https://github.com/chrisxu2016"><img src="https://avatars.githubusercontent.com/u/18379485?v=4" width=75 height=75></a>
<a href="https://github.com/lfchener"><img src="https://avatars.githubusercontent.com/u/6771821?v=4" width=75 height=75></a>
<a href="https://github.com/luotao1"><img src="https://avatars.githubusercontent.com/u/6836917?v=4" width=75 height=75></a>
<a href="https://github.com/wanghaoshuang"><img src="https://avatars.githubusercontent.com/u/7534971?v=4" width=75 height=75></a>
<a href="https://github.com/gongel"><img src="https://avatars.githubusercontent.com/u/24390500?v=4" width=75 height=75></a>
<a href="https://github.com/mmglove"><img src="https://avatars.githubusercontent.com/u/38800877?v=4" width=75 height=75></a>
<a href="https://github.com/iclementine"><img src="https://avatars.githubusercontent.com/u/16222986?v=4" width=75 height=75></a>
<a href="https://github.com/ZeyuChen"><img src="https://avatars.githubusercontent.com/u/1371212?v=4" width=75 height=75></a>
<a href="https://github.com/AK391"><img src="https://avatars.githubusercontent.com/u/81195143?v=4" width=75 height=75></a>
<a href="https://github.com/qingqing01"><img src="https://avatars.githubusercontent.com/u/7845005?v=4" width=75 height=75></a>
<a href="https://github.com/ericxk"><img src="https://avatars.githubusercontent.com/u/4719594?v=4" width=75 height=75></a>
<a href="https://github.com/kvinwang"><img src="https://avatars.githubusercontent.com/u/6442159?v=4" width=75 height=75></a>
<a href="https://github.com/jiqiren11"><img src="https://avatars.githubusercontent.com/u/82639260?v=4" width=75 height=75></a>
<a href="https://github.com/AshishKarel"><img src="https://avatars.githubusercontent.com/u/58069375?v=4" width=75 height=75></a>
<a href="https://github.com/chesterkuo"><img src="https://avatars.githubusercontent.com/u/6285069?v=4" width=75 height=75></a>
<a href="https://github.com/tensor-tang"><img src="https://avatars.githubusercontent.com/u/21351065?v=4" width=75 height=75></a>
<a href="https://github.com/hysunflower"><img src="https://avatars.githubusercontent.com/u/52739577?v=4" width=75 height=75></a>
<a href="https://github.com/wwhu"><img src="https://avatars.githubusercontent.com/u/6081200?v=4" width=75 height=75></a>
<a href="https://github.com/lispc"><img src="https://avatars.githubusercontent.com/u/2833376?v=4" width=75 height=75></a>
<a href="https://github.com/jerryuhoo"><img src="https://avatars.githubusercontent.com/u/24245709?v=4" width=75 height=75></a>
<a href="https://github.com/harisankarh"><img src="https://avatars.githubusercontent.com/u/1307053?v=4" width=75 height=75></a>
<a href="https://github.com/Jackiexiao"><img src="https://avatars.githubusercontent.com/u/18050469?v=4" width=75 height=75></a>
<a href="https://github.com/limpidezza"><img src="https://avatars.githubusercontent.com/u/71760778?v=4" width=75 height=75></a>
</p>
## Acknowledgement
- Many thanks to [yeyupiaoling](https://github.com/yeyupiaoling)/[PPASR](https://github.com/yeyupiaoling/PPASR)/[PaddlePaddle-DeepSpeech](https://github.com/yeyupiaoling/PaddlePaddle-DeepSpeech)/[VoiceprintRecognition-PaddlePaddle](https://github.com/yeyupiaoling/VoiceprintRecognition-PaddlePaddle)/[AudioClassification-PaddlePaddle](https://github.com/yeyupiaoling/AudioClassification-PaddlePaddle) for years of attention, constructive advice and great help.
- Many thanks to [mymagicpower](https://github.com/mymagicpower) for the Java implementation of ASR upon [short](https://github.com/mymagicpower/AIAS/tree/main/3_audio_sdks/asr_sdk) and [long](https://github.com/mymagicpower/AIAS/tree/main/3_audio_sdks/asr_long_audio_sdk) audio files.
- Many thanks to [JiehangXie](https://github.com/JiehangXie)/[PaddleBoBo](https://github.com/JiehangXie/PaddleBoBo) for developing Virtual Uploader(VUP)/Virtual YouTuber(VTuber) with PaddleSpeech TTS function.
- Many thanks to [745165806](https://github.com/745165806)/[PaddleSpeechTask](https://github.com/745165806/PaddleSpeechTask) for contributing Punctuation Restoration model.
- Many thanks to [kslz](https://github.com/745165806) for supplementary Chinese documents.
- Many thanks to [awmmmm](https://github.com/awmmmm) for contributing fastspeech2 aishell3 conformer pretrained model.
- Many thanks to [phecda-xu](https://github.com/phecda-xu)/[PaddleDubbing](https://github.com/phecda-xu/PaddleDubbing) for developing a dubbing tool with GUI based on PaddleSpeech TTS model.
- Many thanks to [jerryuhoo](https://github.com/jerryuhoo)/[VTuberTalk](https://github.com/jerryuhoo/VTuberTalk) for developing a GUI tool based on PaddleSpeech TTS and code for making datasets from videos based on PaddleSpeech ASR.
Besides, PaddleSpeech depends on a lot of open source repositories. See [references](./docs/source/reference.md) for more information.
<a name="License"></a>
## License
PaddleSpeech is provided under the [Apache-2.0 License](./LICENSE).