You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/demos/text_to_speech/README.md

129 lines
4.4 KiB

([简体中文](./README_cn.md)|English)
# TTS (Text To Speech)
## Introduction
Text-to-speech (TTS) is a natural language modeling process that requires changing units of text into units of speech for audio presentation.
This demo is an implementation to generate audio from the given text. It can be done by a single command or a few lines in python using `PaddleSpeech`.
## Usage
### 1. Installation
see [installation](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install.md).
You can choose one way from easy, meduim and hard to install paddlespeech.
### 2. Prepare Input
The input of this demo should be a text of the specific language that can be passed via argument.
### 3. Usage
- Command Line (Recommended)
- Chinese
The default acoustic model is `Fastspeech2`, and the default vocoder is `Parallel WaveGAN`.
```bash
paddlespeech tts --input "你好,欢迎使用百度飞桨深度学习框架!"
```
- Batch Process
```bash
echo -e "1 欢迎光临。\n2 谢谢惠顾。" | paddlespeech tts
```
- Chinese, use `SpeedySpeech` as the acoustic model
```bash
paddlespeech tts --am speedyspeech_csmsc --input "你好,欢迎使用百度飞桨深度学习框架!"
```
- Chinese, multi-speaker
You can change `spk_id` here.
```bash
paddlespeech tts --am fastspeech2_aishell3 --voc pwgan_aishell3 --input "你好,欢迎使用百度飞桨深度学习框架!" --spk_id 0
```
- English
```bash
paddlespeech tts --am fastspeech2_ljspeech --voc pwgan_ljspeech --lang en --input "hello world"
```
- English, multi-speaker
You can change `spk_id` here.
```bash
paddlespeech tts --am fastspeech2_vctk --voc pwgan_vctk --input "hello, boys" --lang en --spk_id 0
```
Usage:
```bash
paddlespeech tts --help
```
Arguments:
- `input`(required): Input text to generate..
- `am`: Acoustic model type of tts task. Default: `fastspeech2_csmsc`.
- `am_config`: Config of acoustic model. Use deault config when it is None. Default: `None`.
- `am_ckpt`: Acoustic model checkpoint. Use pretrained model when it is None. Default: `None`.
- `am_stat`: Mean and standard deviation used to normalize spectrogram when training acoustic model. Default: `None`.
- `phones_dict`: Phone vocabulary file. Default: `None`.
- `tones_dict`: Tone vocabulary file. Default: `None`.
- `speaker_dict`: speaker id map file. Default: `None`.
- `spk_id`: Speaker id for multi speaker acoustic model. Default: `0`.
- `voc`: Vocoder type of tts task. Default: `pwgan_csmsc`.
- `voc_config`: Config of vocoder. Use deault config when it is None. Default: `None`.
- `voc_ckpt`: Vocoder checkpoint. Use pretrained model when it is None. Default: `None`.
- `voc_stat`: Mean and standard deviation used to normalize spectrogram when training vocoder. Default: `None`.
- `lang`: Language of tts task. Default: `zh`.
- `device`: Choose device to execute model inference. Default: default device of paddlepaddle in current environment.
- `output`: Output wave filepath. Default: `output.wav`.
Output:
```bash
[2021-12-09 20:49:58,955] [ INFO] [log.py] [L57] - Wave file has been generated: output.wav
```
- Python API
```python
import paddle
from paddlespeech.cli.tts import TTSExecutor
tts_executor = TTSExecutor()
wav_file = tts_executor(
text='今天的天气不错啊',
output='output.wav',
am='fastspeech2_csmsc',
am_config=None,
am_ckpt=None,
am_stat=None,
spk_id=0,
phones_dict=None,
tones_dict=None,
speaker_dict=None,
voc='pwgan_csmsc',
voc_config=None,
voc_ckpt=None,
voc_stat=None,
lang='zh',
device=paddle.get_device())
print('Wave file has been generated: {}'.format(wav_file))
```
Output:
```bash
Wave file has been generated: output.wav
```
### 4. Pretrained Models
Here is a list of pretrained models released by PaddleSpeech that can be used by command and python API:
- Acoustic model
| Model | Language
| :--- | :---: |
| speedyspeech_csmsc| zh
| fastspeech2_csmsc| zh
| fastspeech2_aishell3| zh
| fastspeech2_ljspeech| en
| fastspeech2_vctk| en
- Vocoder
| Model | Language
| :--- | :---: |
| pwgan_csmsc| zh
| pwgan_aishell3| zh
| pwgan_ljspeech| en
| pwgan_vctk| en
| mb_melgan_csmsc| zh