You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/runtime/examples/vad/README.md

11 KiB

Silero VAD - pre-trained enterprise-grade Voice Activity Detector

This directory provides VAD models on CPU/GPU.

VAD Interface

For vad interface please see .

Create Handdle

PPSHandle_t PPSVadCreateInstance(const char* conf_path);

Destroy Handdle

int PPSVadDestroyInstance(PPSHandle_t instance);

Reset Vad State

int PPSVadReset(PPSHandle_t instance);

Reset Vad state before processing next wav.

Get Chunk Size

int PPSVadChunkSizeSamples(PPSHandle_t instance);

This API will return chunk size in sample unit. When do forward, we need feed chunk size samples, except last chunk.

Vad Forward

PPSVadState_t PPSVadFeedForward(PPSHandle_t instance,
                                float* chunk,
                                int num_element);

Vad has below states:

typedef enum {
    PPS_VAD_ILLEGAL = 0,  // error
    PPS_VAD_SIL,          // silence
    PPS_VAD_START,        // start speech
    PPS_VAD_SPEECH,       // in speech
    PPS_VAD_END,          // end speech
    PPS_VAD_NUMSTATES,    // number of states
} PPSVadState_t;

If PPSVadFeedForward occur an error will return PPS_VAD_ILLEGAL state.

Linux

Build Runtime

# cd /path/to/paddlespeech/runtime
cmake -B build -DBUILD_SHARED_LIBS=OFF -DWITH_ASR=OFF -DWITH_CLS=OFF -DWITH_VAD=ON
cmake --build build

Since VAD using FastDeploy runtime, if you have another FastDeploy Library, you can using this command to build:

# cd /path/to/paddlespeech/runtime
cmake -B build -DBUILD_SHARED_LIBS=OFF -DWITH_ASR=OFF -DWITH_CLS=OFF -DWITH_VAD=ON -DFASTDEPLOY_INSTALL_DIR=/workspace//paddle/FastDeploy/build/Linux/x86_64/install
cmake --build build

DFASTDEPLOY_INSTALL_DIR is the directory of FastDeploy Library.

Run Demo

After building success, we can do this to run demo under this example dir:

bash run.sh

The output like these:

/workspace//PaddleSpeech/runtime/engine/vad/nnet/vad.cc(88)::SetConfig  sr=16 threshold=0.5 beam=0.15 frame_ms=32 min_silence_duration_ms=200 speech_pad_left_ms=0 speech_pad_right_ms=0[INFO] fastdeploy/runtime/runtime.cc(293)::CreateOrtBackend     Runtime initialized with Backend::ORT in Device::CPU./workspace//PaddleSpeech/runtime/engine/vad/nnet/vad.cc(137)::Initialize        init done.[SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [STA] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [END] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [STA] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SIL] [SIL] [SIL] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [END] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [STA] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [END] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [STA] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SIL] [SIL] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [END] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] 
RTF=0.00774591
speak start: 0.32 s, end: 2.464 s | speak start: 3.296 s, end: 4.64 s | speak start: 5.408 s, end: 7.872 s | speak start: 8.192 s, end: 10.72 s   
vad_nnet_main done!
sr = 16000
frame_ms = 32
threshold = 0.5
beam = 0.15
min_silence_duration_ms = 200
speech_pad_left_ms = 0
speech_pad_right_ms = 0
model_path = ./data/silero_vad/silero_vad.onnx
param_path = (default)num_cpu_thread = 1(default)/workspace//PaddleSpeech/runtime/engine/vad/nnet/vad.cc(88)::SetConfig  sr=16 threshold=0.5 beam=0.15 frame_ms=32 min_silence_duration_ms=200 speech_pad_left_ms=0 speech_pad_right_ms=0[INFO] fastdeploy/runtime/runtime.cc(293)::CreateOrtBackend     Runtime initialized with Backend::ORT in Device::CPU./workspace//PaddleSpeech/runtime/engine/vad/nnet/vad.cc(137)::Initialize        init done.
1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 
RTF=0.00778218
vad_interface_main done!

Android

When to using on Android, please setup your NDK enverment before, then do as below:

# cd /path/to/paddlespeech/runtime
bash build_android.sh

Result

Arch RTF Runtime Size
x86_64 0.00778218
arm64-v8a 0.00744745 ~10.532MB

Machine Information

x86_64

The environment as below:

Architecture:        x86_64
CPU op-mode(s):      32-bit, 64-bit
Byte Order:          Little Endian
CPU(s):              80
On-line CPU(s) list: 0-79
Thread(s) per core:  2
Core(s) per socket:  20
Socket(s):           2
NUMA node(s):        2
Vendor ID:           GenuineIntel
CPU family:          6
Model:               85
Model name:          Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz
Stepping:            7
CPU MHz:             2599.998
BogoMIPS:            5199.99
Hypervisor vendor:   KVM
Virtualization type: full
L1d cache:           32K
L1i cache:           32K
L2 cache:            1024K
L3 cache:            33792K
NUMA node0 CPU(s):   0-39
NUMA node1 CPU(s):   40-79
Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc eagerfpu pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 arat umip pku ospke avx512_vnni spec_ctrl arch_capabilities

arm64-v8a

Processor       : AArch64 Processor rev 14 (aarch64)
processor       : 0
BogoMIPS        : 38.40
Features        : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop
CPU implementer : 0x51
CPU architecture: 8
CPU variant     : 0xd
CPU part        : 0x805
CPU revision    : 14

processor       : 1
BogoMIPS        : 38.40
Features        : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop
CPU implementer : 0x51
CPU architecture: 8
CPU variant     : 0xd
CPU part        : 0x805
CPU revision    : 14

processor       : 2
BogoMIPS        : 38.40
Features        : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop
CPU implementer : 0x51
CPU architecture: 8
CPU variant     : 0xd
CPU part        : 0x805
CPU revision    : 14

processor       : 3
BogoMIPS        : 38.40
Features        : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop
CPU implementer : 0x51
CPU architecture: 8
CPU variant     : 0xd
CPU part        : 0x805
CPU revision    : 14

processor       : 4
BogoMIPS        : 38.40
Features        : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop
CPU implementer : 0x51
CPU architecture: 8
CPU variant     : 0xd
CPU part        : 0x804
CPU revision    : 14

processor       : 5
BogoMIPS        : 38.40
Features        : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop
CPU implementer : 0x51
CPU architecture: 8
CPU variant     : 0xd
CPU part        : 0x804
CPU revision    : 14

processor       : 6
BogoMIPS        : 38.40
Features        : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop
CPU implementer : 0x51
CPU architecture: 8
CPU variant     : 0xd
CPU part        : 0x804
CPU revision    : 14

processor       : 7
BogoMIPS        : 38.40
Features        : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop
CPU implementer : 0x51
CPU architecture: 8
CPU variant     : 0xd
CPU part        : 0x804
CPU revision    : 14

Hardware        : Qualcomm Technologies, Inc SM8150

Download Pre-trained ONNX Model

For developers' testing, model exported by VAD are provided below. Developers can download them directly.

模型 大小 备注
silero-vad 1.8MB This model file is sourced from snakers4/silero-vadMIT License

FastDeploy Runtime

For FastDeploy software and hardware requements, and pre-released library please to see FastDeploy:

Reference