You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/exps/jets/synthesize.py

154 lines
4.7 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from pathlib import Path
import jsonlines
import numpy as np
import paddle
import soundfile as sf
import yaml
from timer import timer
from yacs.config import CfgNode
from paddlespeech.t2s.datasets.data_table import DataTable
from paddlespeech.t2s.models.jets import JETS
from paddlespeech.t2s.utils import str2bool
def evaluate(args):
# construct dataset for evaluation
with jsonlines.open(args.test_metadata, 'r') as reader:
test_metadata = list(reader)
# Init body.
with open(args.config) as f:
config = CfgNode(yaml.safe_load(f))
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(config)
fields = ["utt_id", "text"]
converters = {}
spk_num = None
if args.speaker_dict is not None:
print("multiple speaker jets!")
with open(args.speaker_dict, 'rt') as f:
spk_id = [line.strip().split() for line in f.readlines()]
spk_num = len(spk_id)
fields += ["spk_id"]
elif args.voice_cloning:
print("Evaluating voice cloning!")
fields += ["spk_emb"]
else:
print("single speaker jets!")
print("spk_num:", spk_num)
test_dataset = DataTable(
data=test_metadata,
fields=fields,
converters=converters, )
with open(args.phones_dict, "r") as f:
phn_id = [line.strip().split() for line in f.readlines()]
vocab_size = len(phn_id)
print("vocab_size:", vocab_size)
odim = config.n_fft // 2 + 1
config["model"]["generator_params"]["spks"] = spk_num
jets = JETS(idim=vocab_size, odim=odim, **config["model"])
jets.set_state_dict(paddle.load(args.ckpt)["main_params"])
jets.eval()
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
N = 0
T = 0
for datum in test_dataset:
utt_id = datum["utt_id"]
phone_ids = paddle.to_tensor(datum["text"])
with timer() as t:
with paddle.no_grad():
spk_emb = None
spk_id = None
# multi speaker
if args.voice_cloning and "spk_emb" in datum:
spk_emb = paddle.to_tensor(np.load(datum["spk_emb"]))
elif "spk_id" in datum:
spk_id = paddle.to_tensor(datum["spk_id"])
out = jets.inference(
text=phone_ids, sids=spk_id, spembs=spk_emb)
wav = out["wav"]
wav = wav.numpy()
N += wav.size
T += t.elapse
speed = wav.size / t.elapse
rtf = config.fs / speed
print(
f"{utt_id}, wave: {wav.size}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
)
sf.write(str(output_dir / (utt_id + ".wav")), wav, samplerate=config.fs)
print(f"{utt_id} done!")
print(f"generation speed: {N / T}Hz, RTF: {config.fs / (N / T) }")
def parse_args():
# parse args and config
parser = argparse.ArgumentParser(description="Synthesize with JETS")
# model
parser.add_argument(
'--config', type=str, default=None, help='Config of JETS.')
parser.add_argument(
'--ckpt', type=str, default=None, help='Checkpoint file of JETS.')
parser.add_argument(
"--phones_dict", type=str, default=None, help="phone vocabulary file.")
parser.add_argument(
"--speaker_dict", type=str, default=None, help="speaker id map file.")
parser.add_argument(
"--voice-cloning",
type=str2bool,
default=False,
help="whether training voice cloning model.")
# other
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
parser.add_argument("--test_metadata", type=str, help="test metadata.")
parser.add_argument("--output_dir", type=str, help="output dir.")
args = parser.parse_args()
return args
def main():
args = parse_args()
if args.ngpu == 0:
paddle.set_device("cpu")
elif args.ngpu > 0:
paddle.set_device("gpu")
else:
print("ngpu should >= 0 !")
evaluate(args)
if __name__ == "__main__":
main()