# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from pathlib import Path import jsonlines import numpy as np import paddle import soundfile as sf import yaml from timer import timer from yacs.config import CfgNode from paddlespeech.t2s.datasets.data_table import DataTable from paddlespeech.t2s.models.jets import JETS from paddlespeech.t2s.utils import str2bool def evaluate(args): # construct dataset for evaluation with jsonlines.open(args.test_metadata, 'r') as reader: test_metadata = list(reader) # Init body. with open(args.config) as f: config = CfgNode(yaml.safe_load(f)) print("========Args========") print(yaml.safe_dump(vars(args))) print("========Config========") print(config) fields = ["utt_id", "text"] converters = {} spk_num = None if args.speaker_dict is not None: print("multiple speaker jets!") with open(args.speaker_dict, 'rt') as f: spk_id = [line.strip().split() for line in f.readlines()] spk_num = len(spk_id) fields += ["spk_id"] elif args.voice_cloning: print("Evaluating voice cloning!") fields += ["spk_emb"] else: print("single speaker jets!") print("spk_num:", spk_num) test_dataset = DataTable( data=test_metadata, fields=fields, converters=converters, ) with open(args.phones_dict, "r") as f: phn_id = [line.strip().split() for line in f.readlines()] vocab_size = len(phn_id) print("vocab_size:", vocab_size) odim = config.n_fft // 2 + 1 config["model"]["generator_params"]["spks"] = spk_num jets = JETS(idim=vocab_size, odim=odim, **config["model"]) jets.set_state_dict(paddle.load(args.ckpt)["main_params"]) jets.eval() output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) N = 0 T = 0 for datum in test_dataset: utt_id = datum["utt_id"] phone_ids = paddle.to_tensor(datum["text"]) with timer() as t: with paddle.no_grad(): spk_emb = None spk_id = None # multi speaker if args.voice_cloning and "spk_emb" in datum: spk_emb = paddle.to_tensor(np.load(datum["spk_emb"])) elif "spk_id" in datum: spk_id = paddle.to_tensor(datum["spk_id"]) out = jets.inference( text=phone_ids, sids=spk_id, spembs=spk_emb) wav = out["wav"] wav = wav.numpy() N += wav.size T += t.elapse speed = wav.size / t.elapse rtf = config.fs / speed print( f"{utt_id}, wave: {wav.size}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}." ) sf.write(str(output_dir / (utt_id + ".wav")), wav, samplerate=config.fs) print(f"{utt_id} done!") print(f"generation speed: {N / T}Hz, RTF: {config.fs / (N / T) }") def parse_args(): # parse args and config parser = argparse.ArgumentParser(description="Synthesize with JETS") # model parser.add_argument( '--config', type=str, default=None, help='Config of JETS.') parser.add_argument( '--ckpt', type=str, default=None, help='Checkpoint file of JETS.') parser.add_argument( "--phones_dict", type=str, default=None, help="phone vocabulary file.") parser.add_argument( "--speaker_dict", type=str, default=None, help="speaker id map file.") parser.add_argument( "--voice-cloning", type=str2bool, default=False, help="whether training voice cloning model.") # other parser.add_argument( "--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.") parser.add_argument("--test_metadata", type=str, help="test metadata.") parser.add_argument("--output_dir", type=str, help="output dir.") args = parser.parse_args() return args def main(): args = parse_args() if args.ngpu == 0: paddle.set_device("cpu") elif args.ngpu > 0: paddle.set_device("gpu") else: print("ngpu should >= 0 !") evaluate(args) if __name__ == "__main__": main()