You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/models/vits/wavenet/wavenet.py

196 lines
6.7 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
import math
from typing import Optional
import paddle
from paddle import nn
from paddlespeech.t2s.models.vits.wavenet.residual_block import ResidualBlock
class WaveNet(nn.Layer):
"""WaveNet with global conditioning."""
def __init__(
self,
in_channels: int=1,
out_channels: int=1,
kernel_size: int=3,
layers: int=30,
stacks: int=3,
base_dilation: int=2,
residual_channels: int=64,
aux_channels: int=-1,
gate_channels: int=128,
skip_channels: int=64,
global_channels: int=-1,
dropout_rate: float=0.0,
bias: bool=True,
use_weight_norm: bool=True,
use_first_conv: bool=False,
use_last_conv: bool=False,
scale_residual: bool=False,
scale_skip_connect: bool=False, ):
"""Initialize WaveNet module.
Args:
in_channels (int):
Number of input channels.
out_channels (int):
Number of output channels.
kernel_size (int):
Kernel size of dilated convolution.
layers (int):
Number of residual block layers.
stacks (int):
Number of stacks i.e., dilation cycles.
base_dilation (int):
Base dilation factor.
residual_channels (int):
Number of channels in residual conv.
gate_channels (int):
Number of channels in gated conv.
skip_channels (int):
Number of channels in skip conv.
aux_channels (int):
Number of channels for local conditioning feature.
global_channels (int):
Number of channels for global conditioning feature.
dropout_rate (float):
Dropout rate. 0.0 means no dropout applied.
bias (bool):
Whether to use bias parameter in conv layer.
use_weight_norm (bool):
Whether to use weight norm. If set to true, it will be applied to all of the conv layers.
use_first_conv (bool):
Whether to use the first conv layers.
use_last_conv (bool):
Whether to use the last conv layers.
scale_residual (bool):
Whether to scale the residual outputs.
scale_skip_connect (bool):
Whether to scale the skip connection outputs.
"""
super().__init__()
self.layers = layers
self.stacks = stacks
self.kernel_size = kernel_size
self.base_dilation = base_dilation
self.use_first_conv = use_first_conv
self.use_last_conv = use_last_conv
self.scale_skip_connect = scale_skip_connect
# check the number of layers and stacks
assert layers % stacks == 0
layers_per_stack = layers // stacks
# define first convolution
if self.use_first_conv:
self.first_conv = nn.Conv1D(
in_channels, residual_channels, kernel_size=1, bias_attr=True)
# define residual blocks
self.conv_layers = nn.LayerList()
for layer in range(layers):
dilation = base_dilation**(layer % layers_per_stack)
conv = ResidualBlock(
kernel_size=kernel_size,
residual_channels=residual_channels,
gate_channels=gate_channels,
skip_channels=skip_channels,
aux_channels=aux_channels,
global_channels=global_channels,
dilation=dilation,
dropout_rate=dropout_rate,
bias=bias,
scale_residual=scale_residual, )
self.conv_layers.append(conv)
# define output layers
if self.use_last_conv:
self.last_conv = nn.Sequential(
nn.ReLU(),
nn.Conv1D(
skip_channels, skip_channels, kernel_size=1,
bias_attr=True),
nn.ReLU(),
nn.Conv1D(
skip_channels, out_channels, kernel_size=1, bias_attr=True),
)
# apply weight norm
if use_weight_norm:
self.apply_weight_norm()
def forward(
self,
x: paddle.Tensor,
x_mask: Optional[paddle.Tensor]=None,
c: Optional[paddle.Tensor]=None,
g: Optional[paddle.Tensor]=None, ) -> paddle.Tensor:
"""Calculate forward propagation.
Args:
x (Tensor):
Input noise signal (B, 1, T) if use_first_conv else (B, residual_channels, T).
x_mask (Optional[Tensor]):
Mask tensor (B, 1, T).
c (Optional[Tensor]):
Local conditioning features (B, aux_channels, T).
g (Optional[Tensor]):
Global conditioning features (B, global_channels, 1).
Returns:
Tensor:
Output tensor (B, out_channels, T) if use_last_conv else(B, residual_channels, T).
"""
# encode to hidden representation
if self.use_first_conv:
x = self.first_conv(x)
# residual block
skips = 0.0
for f in self.conv_layers:
x, h = f(x, x_mask=x_mask, c=c, g=g)
skips = skips + h
x = skips
if self.scale_skip_connect:
x = x * math.sqrt(1.0 / len(self.conv_layers))
# apply final layers
if self.use_last_conv:
x = self.last_conv(x)
return x
def apply_weight_norm(self):
def _apply_weight_norm(layer):
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
nn.utils.weight_norm(layer)
self.apply(_apply_weight_norm)
def remove_weight_norm(self):
def _remove_weight_norm(layer):
try:
nn.utils.remove_weight_norm(layer)
except ValueError:
pass
self.apply(_remove_weight_norm)