# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from espnet(https://github.com/espnet/espnet) import math from typing import Optional import paddle from paddle import nn from paddlespeech.t2s.models.vits.wavenet.residual_block import ResidualBlock class WaveNet(nn.Layer): """WaveNet with global conditioning.""" def __init__( self, in_channels: int=1, out_channels: int=1, kernel_size: int=3, layers: int=30, stacks: int=3, base_dilation: int=2, residual_channels: int=64, aux_channels: int=-1, gate_channels: int=128, skip_channels: int=64, global_channels: int=-1, dropout_rate: float=0.0, bias: bool=True, use_weight_norm: bool=True, use_first_conv: bool=False, use_last_conv: bool=False, scale_residual: bool=False, scale_skip_connect: bool=False, ): """Initialize WaveNet module. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. kernel_size (int): Kernel size of dilated convolution. layers (int): Number of residual block layers. stacks (int): Number of stacks i.e., dilation cycles. base_dilation (int): Base dilation factor. residual_channels (int): Number of channels in residual conv. gate_channels (int): Number of channels in gated conv. skip_channels (int): Number of channels in skip conv. aux_channels (int): Number of channels for local conditioning feature. global_channels (int): Number of channels for global conditioning feature. dropout_rate (float): Dropout rate. 0.0 means no dropout applied. bias (bool): Whether to use bias parameter in conv layer. use_weight_norm (bool): Whether to use weight norm. If set to true, it will be applied to all of the conv layers. use_first_conv (bool): Whether to use the first conv layers. use_last_conv (bool): Whether to use the last conv layers. scale_residual (bool): Whether to scale the residual outputs. scale_skip_connect (bool): Whether to scale the skip connection outputs. """ super().__init__() self.layers = layers self.stacks = stacks self.kernel_size = kernel_size self.base_dilation = base_dilation self.use_first_conv = use_first_conv self.use_last_conv = use_last_conv self.scale_skip_connect = scale_skip_connect # check the number of layers and stacks assert layers % stacks == 0 layers_per_stack = layers // stacks # define first convolution if self.use_first_conv: self.first_conv = nn.Conv1D( in_channels, residual_channels, kernel_size=1, bias_attr=True) # define residual blocks self.conv_layers = nn.LayerList() for layer in range(layers): dilation = base_dilation**(layer % layers_per_stack) conv = ResidualBlock( kernel_size=kernel_size, residual_channels=residual_channels, gate_channels=gate_channels, skip_channels=skip_channels, aux_channels=aux_channels, global_channels=global_channels, dilation=dilation, dropout_rate=dropout_rate, bias=bias, scale_residual=scale_residual, ) self.conv_layers.append(conv) # define output layers if self.use_last_conv: self.last_conv = nn.Sequential( nn.ReLU(), nn.Conv1D( skip_channels, skip_channels, kernel_size=1, bias_attr=True), nn.ReLU(), nn.Conv1D( skip_channels, out_channels, kernel_size=1, bias_attr=True), ) # apply weight norm if use_weight_norm: self.apply_weight_norm() def forward( self, x: paddle.Tensor, x_mask: Optional[paddle.Tensor]=None, c: Optional[paddle.Tensor]=None, g: Optional[paddle.Tensor]=None, ) -> paddle.Tensor: """Calculate forward propagation. Args: x (Tensor): Input noise signal (B, 1, T) if use_first_conv else (B, residual_channels, T). x_mask (Optional[Tensor]): Mask tensor (B, 1, T). c (Optional[Tensor]): Local conditioning features (B, aux_channels, T). g (Optional[Tensor]): Global conditioning features (B, global_channels, 1). Returns: Tensor: Output tensor (B, out_channels, T) if use_last_conv else(B, residual_channels, T). """ # encode to hidden representation if self.use_first_conv: x = self.first_conv(x) # residual block skips = 0.0 for f in self.conv_layers: x, h = f(x, x_mask=x_mask, c=c, g=g) skips = skips + h x = skips if self.scale_skip_connect: x = x * math.sqrt(1.0 / len(self.conv_layers)) # apply final layers if self.use_last_conv: x = self.last_conv(x) return x def apply_weight_norm(self): def _apply_weight_norm(layer): if isinstance(layer, (nn.Conv1D, nn.Conv2D)): nn.utils.weight_norm(layer) self.apply(_apply_weight_norm) def remove_weight_norm(self): def _remove_weight_norm(layer): try: nn.utils.remove_weight_norm(layer) except ValueError: pass self.apply(_remove_weight_norm)