You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/exps/starganv2_vc/train.py

260 lines
9.1 KiB

# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
import shutil
from pathlib import Path
import jsonlines
import numpy as np
import paddle
import yaml
from paddle import DataParallel
from paddle import distributed as dist
from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler
from paddle.optimizer import AdamW
from paddle.optimizer.lr import OneCycleLR
from yacs.config import CfgNode
from paddlespeech.cli.utils import download_and_decompress
from paddlespeech.resource.pretrained_models import StarGANv2VC_source
from paddlespeech.t2s.datasets.am_batch_fn import build_starganv2_vc_collate_fn
from paddlespeech.t2s.datasets.data_table import StarGANv2VCDataTable
from paddlespeech.t2s.models.starganv2_vc import ASRCNN
from paddlespeech.t2s.models.starganv2_vc import Discriminator
from paddlespeech.t2s.models.starganv2_vc import Generator
from paddlespeech.t2s.models.starganv2_vc import JDCNet
from paddlespeech.t2s.models.starganv2_vc import MappingNetwork
from paddlespeech.t2s.models.starganv2_vc import StarGANv2VCEvaluator
from paddlespeech.t2s.models.starganv2_vc import StarGANv2VCUpdater
from paddlespeech.t2s.models.starganv2_vc import StyleEncoder
from paddlespeech.t2s.training.extensions.snapshot import Snapshot
from paddlespeech.t2s.training.extensions.visualizer import VisualDL
from paddlespeech.t2s.training.seeding import seed_everything
from paddlespeech.t2s.training.trainer import Trainer
from paddlespeech.utils.env import MODEL_HOME
def train_sp(args, config):
# decides device type and whether to run in parallel
# setup running environment correctly
world_size = paddle.distributed.get_world_size()
if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0:
paddle.set_device("cpu")
else:
paddle.set_device("gpu")
if world_size > 1:
paddle.distributed.init_parallel_env()
# set the random seed, it is a must for multiprocess training
seed_everything(config.seed)
print(
f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}",
)
# to edit
fields = ["speech", "speech_lengths"]
converters = {"speech": np.load}
collate_fn = build_starganv2_vc_collate_fn(
latent_dim=config['mapping_network_params']['latent_dim'],
max_mel_length=config['max_mel_length'])
# dataloader has been too verbose
logging.getLogger("DataLoader").disabled = True
# construct dataset for training and validation
with jsonlines.open(args.train_metadata, 'r') as reader:
train_metadata = list(reader)
train_dataset = StarGANv2VCDataTable(data=train_metadata)
with jsonlines.open(args.dev_metadata, 'r') as reader:
dev_metadata = list(reader)
dev_dataset = StarGANv2VCDataTable(data=dev_metadata)
# collate function and dataloader
train_sampler = DistributedBatchSampler(
train_dataset,
batch_size=config.batch_size,
shuffle=True,
drop_last=True)
print("samplers done!")
train_dataloader = DataLoader(
train_dataset,
batch_sampler=train_sampler,
collate_fn=collate_fn,
num_workers=config.num_workers)
dev_dataloader = DataLoader(
dev_dataset,
shuffle=False,
drop_last=False,
batch_size=config.batch_size,
collate_fn=collate_fn,
num_workers=config.num_workers)
print("dataloaders done!")
# load model
model_version = '1.0'
uncompress_path = download_and_decompress(StarGANv2VC_source[model_version],
MODEL_HOME)
generator = Generator(**config['generator_params'])
mapping_network = MappingNetwork(**config['mapping_network_params'])
style_encoder = StyleEncoder(**config['style_encoder_params'])
discriminator = Discriminator(**config['discriminator_params'])
# load pretrained model
jdc_model_dir = os.path.join(uncompress_path, 'jdcnet.pdz')
asr_model_dir = os.path.join(uncompress_path, 'asr.pdz')
F0_model = JDCNet(num_class=1, seq_len=192)
F0_model.set_state_dict(paddle.load(jdc_model_dir)['main_params'])
F0_model.eval()
asr_model = ASRCNN(**config['asr_params'])
asr_model.set_state_dict(paddle.load(asr_model_dir)['main_params'])
asr_model.eval()
if world_size > 1:
generator = DataParallel(generator)
discriminator = DataParallel(discriminator)
print("models done!")
lr_schedule_g = OneCycleLR(**config["generator_scheduler_params"])
optimizer_g = AdamW(
learning_rate=lr_schedule_g,
parameters=generator.parameters(),
**config["generator_optimizer_params"])
lr_schedule_s = OneCycleLR(**config["style_encoder_scheduler_params"])
optimizer_s = AdamW(
learning_rate=lr_schedule_s,
parameters=style_encoder.parameters(),
**config["style_encoder_optimizer_params"])
lr_schedule_m = OneCycleLR(**config["mapping_network_scheduler_params"])
optimizer_m = AdamW(
learning_rate=lr_schedule_m,
parameters=mapping_network.parameters(),
**config["mapping_network_optimizer_params"])
lr_schedule_d = OneCycleLR(**config["discriminator_scheduler_params"])
optimizer_d = AdamW(
learning_rate=lr_schedule_d,
parameters=discriminator.parameters(),
**config["discriminator_optimizer_params"])
print("optimizers done!")
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
if dist.get_rank() == 0:
config_name = args.config.split("/")[-1]
# copy conf to output_dir
shutil.copyfile(args.config, output_dir / config_name)
updater = StarGANv2VCUpdater(
models={
"generator": generator,
"style_encoder": style_encoder,
"mapping_network": mapping_network,
"discriminator": discriminator,
"F0_model": F0_model,
"asr_model": asr_model,
},
optimizers={
"generator": optimizer_g,
"style_encoder": optimizer_s,
"mapping_network": optimizer_m,
"discriminator": optimizer_d,
},
schedulers={
"generator": lr_schedule_g,
"style_encoder": lr_schedule_s,
"mapping_network": lr_schedule_m,
"discriminator": lr_schedule_d,
},
dataloader=train_dataloader,
g_loss_params=config.loss_params.g_loss,
d_loss_params=config.loss_params.d_loss,
adv_cls_epoch=config.loss_params.adv_cls_epoch,
con_reg_epoch=config.loss_params.con_reg_epoch,
output_dir=output_dir)
evaluator = StarGANv2VCEvaluator(
models={
"generator": generator,
"style_encoder": style_encoder,
"mapping_network": mapping_network,
"discriminator": discriminator,
"F0_model": F0_model,
"asr_model": asr_model,
},
dataloader=dev_dataloader,
g_loss_params=config.loss_params.g_loss,
d_loss_params=config.loss_params.d_loss,
adv_cls_epoch=config.loss_params.adv_cls_epoch,
con_reg_epoch=config.loss_params.con_reg_epoch,
output_dir=output_dir)
trainer = Trainer(updater, (config.max_epoch, 'epoch'), output_dir)
if dist.get_rank() == 0:
trainer.extend(evaluator, trigger=(1, "epoch"))
trainer.extend(VisualDL(output_dir), trigger=(1, "iteration"))
trainer.extend(
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
print("Trainer Done!")
trainer.run()
def main():
# parse args and config and redirect to train_sp
parser = argparse.ArgumentParser(description="Train a HiFiGAN model.")
parser.add_argument("--config", type=str, help="HiFiGAN config file.")
parser.add_argument("--train-metadata", type=str, help="training data.")
parser.add_argument("--dev-metadata", type=str, help="dev data.")
parser.add_argument("--output-dir", type=str, help="output dir.")
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
args = parser.parse_args()
with open(args.config, 'rt') as f:
config = CfgNode(yaml.safe_load(f))
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(config)
print(
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
)
# dispatch
if args.ngpu > 1:
dist.spawn(train_sp, (args, config), nprocs=args.ngpu)
else:
train_sp(args, config)
if __name__ == "__main__":
main()