# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os import shutil from pathlib import Path import jsonlines import numpy as np import paddle import yaml from paddle import DataParallel from paddle import distributed as dist from paddle.io import DataLoader from paddle.io import DistributedBatchSampler from paddle.optimizer import AdamW from paddle.optimizer.lr import OneCycleLR from yacs.config import CfgNode from paddlespeech.cli.utils import download_and_decompress from paddlespeech.resource.pretrained_models import StarGANv2VC_source from paddlespeech.t2s.datasets.am_batch_fn import build_starganv2_vc_collate_fn from paddlespeech.t2s.datasets.data_table import StarGANv2VCDataTable from paddlespeech.t2s.models.starganv2_vc import ASRCNN from paddlespeech.t2s.models.starganv2_vc import Discriminator from paddlespeech.t2s.models.starganv2_vc import Generator from paddlespeech.t2s.models.starganv2_vc import JDCNet from paddlespeech.t2s.models.starganv2_vc import MappingNetwork from paddlespeech.t2s.models.starganv2_vc import StarGANv2VCEvaluator from paddlespeech.t2s.models.starganv2_vc import StarGANv2VCUpdater from paddlespeech.t2s.models.starganv2_vc import StyleEncoder from paddlespeech.t2s.training.extensions.snapshot import Snapshot from paddlespeech.t2s.training.extensions.visualizer import VisualDL from paddlespeech.t2s.training.seeding import seed_everything from paddlespeech.t2s.training.trainer import Trainer from paddlespeech.utils.env import MODEL_HOME def train_sp(args, config): # decides device type and whether to run in parallel # setup running environment correctly world_size = paddle.distributed.get_world_size() if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0: paddle.set_device("cpu") else: paddle.set_device("gpu") if world_size > 1: paddle.distributed.init_parallel_env() # set the random seed, it is a must for multiprocess training seed_everything(config.seed) print( f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}", ) # to edit fields = ["speech", "speech_lengths"] converters = {"speech": np.load} collate_fn = build_starganv2_vc_collate_fn( latent_dim=config['mapping_network_params']['latent_dim'], max_mel_length=config['max_mel_length']) # dataloader has been too verbose logging.getLogger("DataLoader").disabled = True # construct dataset for training and validation with jsonlines.open(args.train_metadata, 'r') as reader: train_metadata = list(reader) train_dataset = StarGANv2VCDataTable(data=train_metadata) with jsonlines.open(args.dev_metadata, 'r') as reader: dev_metadata = list(reader) dev_dataset = StarGANv2VCDataTable(data=dev_metadata) # collate function and dataloader train_sampler = DistributedBatchSampler( train_dataset, batch_size=config.batch_size, shuffle=True, drop_last=True) print("samplers done!") train_dataloader = DataLoader( train_dataset, batch_sampler=train_sampler, collate_fn=collate_fn, num_workers=config.num_workers) dev_dataloader = DataLoader( dev_dataset, shuffle=False, drop_last=False, batch_size=config.batch_size, collate_fn=collate_fn, num_workers=config.num_workers) print("dataloaders done!") # load model model_version = '1.0' uncompress_path = download_and_decompress(StarGANv2VC_source[model_version], MODEL_HOME) generator = Generator(**config['generator_params']) mapping_network = MappingNetwork(**config['mapping_network_params']) style_encoder = StyleEncoder(**config['style_encoder_params']) discriminator = Discriminator(**config['discriminator_params']) # load pretrained model jdc_model_dir = os.path.join(uncompress_path, 'jdcnet.pdz') asr_model_dir = os.path.join(uncompress_path, 'asr.pdz') F0_model = JDCNet(num_class=1, seq_len=192) F0_model.set_state_dict(paddle.load(jdc_model_dir)['main_params']) F0_model.eval() asr_model = ASRCNN(**config['asr_params']) asr_model.set_state_dict(paddle.load(asr_model_dir)['main_params']) asr_model.eval() if world_size > 1: generator = DataParallel(generator) discriminator = DataParallel(discriminator) print("models done!") lr_schedule_g = OneCycleLR(**config["generator_scheduler_params"]) optimizer_g = AdamW( learning_rate=lr_schedule_g, parameters=generator.parameters(), **config["generator_optimizer_params"]) lr_schedule_s = OneCycleLR(**config["style_encoder_scheduler_params"]) optimizer_s = AdamW( learning_rate=lr_schedule_s, parameters=style_encoder.parameters(), **config["style_encoder_optimizer_params"]) lr_schedule_m = OneCycleLR(**config["mapping_network_scheduler_params"]) optimizer_m = AdamW( learning_rate=lr_schedule_m, parameters=mapping_network.parameters(), **config["mapping_network_optimizer_params"]) lr_schedule_d = OneCycleLR(**config["discriminator_scheduler_params"]) optimizer_d = AdamW( learning_rate=lr_schedule_d, parameters=discriminator.parameters(), **config["discriminator_optimizer_params"]) print("optimizers done!") output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) if dist.get_rank() == 0: config_name = args.config.split("/")[-1] # copy conf to output_dir shutil.copyfile(args.config, output_dir / config_name) updater = StarGANv2VCUpdater( models={ "generator": generator, "style_encoder": style_encoder, "mapping_network": mapping_network, "discriminator": discriminator, "F0_model": F0_model, "asr_model": asr_model, }, optimizers={ "generator": optimizer_g, "style_encoder": optimizer_s, "mapping_network": optimizer_m, "discriminator": optimizer_d, }, schedulers={ "generator": lr_schedule_g, "style_encoder": lr_schedule_s, "mapping_network": lr_schedule_m, "discriminator": lr_schedule_d, }, dataloader=train_dataloader, g_loss_params=config.loss_params.g_loss, d_loss_params=config.loss_params.d_loss, adv_cls_epoch=config.loss_params.adv_cls_epoch, con_reg_epoch=config.loss_params.con_reg_epoch, output_dir=output_dir) evaluator = StarGANv2VCEvaluator( models={ "generator": generator, "style_encoder": style_encoder, "mapping_network": mapping_network, "discriminator": discriminator, "F0_model": F0_model, "asr_model": asr_model, }, dataloader=dev_dataloader, g_loss_params=config.loss_params.g_loss, d_loss_params=config.loss_params.d_loss, adv_cls_epoch=config.loss_params.adv_cls_epoch, con_reg_epoch=config.loss_params.con_reg_epoch, output_dir=output_dir) trainer = Trainer(updater, (config.max_epoch, 'epoch'), output_dir) if dist.get_rank() == 0: trainer.extend(evaluator, trigger=(1, "epoch")) trainer.extend(VisualDL(output_dir), trigger=(1, "iteration")) trainer.extend( Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch')) print("Trainer Done!") trainer.run() def main(): # parse args and config and redirect to train_sp parser = argparse.ArgumentParser(description="Train a HiFiGAN model.") parser.add_argument("--config", type=str, help="HiFiGAN config file.") parser.add_argument("--train-metadata", type=str, help="training data.") parser.add_argument("--dev-metadata", type=str, help="dev data.") parser.add_argument("--output-dir", type=str, help="output dir.") parser.add_argument( "--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.") args = parser.parse_args() with open(args.config, 'rt') as f: config = CfgNode(yaml.safe_load(f)) print("========Args========") print(yaml.safe_dump(vars(args))) print("========Config========") print(config) print( f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}" ) # dispatch if args.ngpu > 1: dist.spawn(train_sp, (args, config), nprocs=args.ngpu) else: train_sp(args, config) if __name__ == "__main__": main()