You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/docs/source/tts/PPTTS.md

77 lines
3.6 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

([简体中文](./PPTTS_cn.md)|English)
# PPTTS
- [1. Introduction](#1)
- [2. Characteristic](#2)
- [3. Benchmark](#3)
- [4. Demo](#4)
- [5. Tutorials](#5)
- [5.1 Training and Inference Optimization](#51)
- [5.2 Characteristic APPs of TTS](#52)
- [5.3 TTS Server](#53)
<a name="1"></a>
## 1. Introduction
PP-TTS is a streaming speech synthesis system developed by PaddleSpeech. Based on the implementation of [SOTA Algorithms](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/released_model.md#text-to-speech-models), a faster inference engine is used to realize streaming speech synthesis technology to meet the needs of commercial speech interaction scenarios.
#### PP-TTS
Pipline of TTS
<center><img src=https://ai-studio-static-online.cdn.bcebos.com/ea69ae1faff84940a59c7079d16b3a8db2741d2c423846f68822f4a7f28726e9 width="600" ></center>
PP-TTS provides a Chinese streaming speech synthesis system based on FastSpeech2 and HiFiGAN by default:
- Text Frontend The rule-based Chinese text frontend system is adopted to optimize Chinese text such as text normalization, polyphony, and tone sandhi.
- Acoustic Model: The decoder of FastSpeech2 is improved so that it can be stream synthesized
- Vocoder: Streaming synthesis of GAN vocoder is supported
- Inference Engine Using ONNXRuntime to optimize the inference of TTS models, so that the TTS system can also achieve RTF < 1 on low-voltage, meeting the requirements of streaming synthesis
<a name="2"></a>
## 2. Characteristic
- Open source leading Chinese TTS system
- Using ONNXRuntime to optimize the inference of TTS models
- The only open-source streaming TTS system
- Easy disassembly: Developers can easily replace different acoustic models and vocoders in different languages, use different inference engines (Paddle dynamic graph, PaddleInference, ONNXRuntime, etc.), and use different network services (HTTP, WebSocket)
<a name="3"></a>
## 3. Benchmark
PaddleSpeech TTS models' benchmark: [TTS-Benchmark](https://github.com/PaddlePaddle/PaddleSpeech/wiki/TTS-Benchmark)。
<a name="4"></a>
## 4. Demo
See: [Streaming TTS Demo Video](https://paddlespeech.readthedocs.io/en/latest/streaming_tts_demo_video.html)
<a name="5"></a>
## 5. Tutorials
<a name="51"></a>
### 5.1 Training and Inference Optimization
Default FastSpeech2: [tts3/run.sh](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/examples/csmsc/tts3/run.sh)
Streaming FastSpeech2: [tts3/run_cnndecoder.sh](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/examples/csmsc/tts3/run_cnndecoder.sh)
HiFiGAN[voc5/run.sh](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/examples/csmsc/voc5/run.sh)
<a name="52"></a>
### 5.2 Characteristic APPs of TTS
text_to_speech - convert text into speech: [text_to_speech](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/demos/text_to_speech)
style_fs2 - multi style control for FastSpeech2 model: [style_fs2](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/demos/style_fs2)
story talker - book reader based on OCR and TTS: [story_talker](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/demos/story_talker)
metaverse - 2D AR with TTS: [metaverse](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/demos/metaverse)
<a name="53"></a>
### 5.3 TTS Server
Non-streaming TTS Server: [speech_server](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/demos/speech_server)
Streaming TTS Server: [streaming_tts_server](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/demos/streaming_tts_server)
For more tutorials please see: [PP-TTS流式语音合成原理及服务部署
](https://aistudio.baidu.com/aistudio/projectdetail/3885352)