You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2.3 KiB
2.3 KiB
Speech Translation
Introduction
Speech translation is the process by which conversational spoken phrases are instantly translated and spoken aloud in a second language.
This demo is an implementation to recognize text from a specific audio file and translate to target language. It can be done by a single command or a few lines in python using PaddleSpeech
.
Usage
1. Installation
pip install paddlespeech
2. Prepare Input File
Input of this demo should be a WAV file(.wav
).
Here are sample files for this demo that can be downloaded:
wget https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespeech.bj.bcebos.com/PaddleAudio/en.wav
3. Usage
-
Command Line(Recommended)
paddlespeech st --input ./en.wav
Usage:
paddlespeech st --help
Arguments:
input
(required): Audio file to recognize and translate.model
: Model type of st task. Default:fat_st_ted
.src_lang
: Source language. Default:en
.tgt_lang
: Target language. Default:zh
.sample_rate
: Sample rate of the model. Default:16000
.config
: Config of st task. Use pretrained model when it is None. Default:None
.ckpt_path
: Model checkpoint. Use pretrained model when it is None. Default:None
.device
: Choose device to execute model inference. Default: default device of paddlepaddle in current environment.
Output:
[2021-12-09 11:13:03,178] [ INFO] [utils.py] [L225] - ST Result: ['我 在 这栋 建筑 的 古老 门上 敲门 。']
-
Python API
import paddle from paddlespeech.cli import STExecutor st_executor = STExecutor() text = st_executor( model='fat_st_ted', src_lang='en', tgt_lang='zh', sample_rate=16000, config=None, # Set `config` and `ckpt_path` to None to use pretrained model. ckpt_path=None, audio_file='./en.wav', device=paddle.get_device()) print('ST Result: \n{}'.format(text))
Output:
ST Result: ['我 在 这栋 建筑 的 古老 门上 敲门 。']
4.Pretrained Models
Here is a list of pretrained models released by PaddleSpeech that can be used by command and python api:
Model | Source Language | Target Language |
---|---|---|
fat_st_ted | en | zh |