You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/runtime/engine/asr/nnet/u2_onnx_nnet.cc

448 lines
18 KiB

// Copyright (c) 2020 Mobvoi Inc (Binbin Zhang, Di Wu)
// 2022 ZeXuan Li (lizexuan@huya.com)
// Xingchen Song(sxc19@mails.tsinghua.edu.cn)
// hamddct@gmail.com (Mddct)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "nnet/u2_onnx_nnet.h"
namespace ppspeech {
Ort::Env U2OnnxNnet::env_ = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "");
Ort::SessionOptions U2OnnxNnet::session_options_ = Ort::SessionOptions();
void U2OnnxNnet::InitEngineThreads(int num_threads) {
session_options_.SetIntraOpNumThreads(num_threads);
}
void U2OnnxNnet::LoadModel(const std::string& model_dir) {
std::string encoder_onnx_path = model_dir + "/encoder.onnx";
std::string rescore_onnx_path = model_dir + "/decoder.onnx";
std::string ctc_onnx_path = model_dir + "/ctc.onnx";
// 1. Load sessions
try {
#ifdef _MSC_VER
encoder_session_ = std::make_shared<Ort::Session>(
env_, ToWString(encoder_onnx_path).c_str(), session_options_);
rescore_session_ = std::make_shared<Ort::Session>(
env_, ToWString(rescore_onnx_path).c_str(), session_options_);
ctc_session_ = std::make_shared<Ort::Session>(
env_, ToWString(ctc_onnx_path).c_str(), session_options_);
#else
encoder_session_ = std::make_shared<Ort::Session>(
env_, encoder_onnx_path.c_str(), session_options_);
rescore_session_ = std::make_shared<Ort::Session>(
env_, rescore_onnx_path.c_str(), session_options_);
ctc_session_ = std::make_shared<Ort::Session>(env_, ctc_onnx_path.c_str(),
session_options_);
#endif
} catch (std::exception const& e) {
LOG(ERROR) << "error when load onnx model: " << e.what();
exit(0);
}
// 2. Read metadata
auto model_metadata = encoder_session_->GetModelMetadata();
Ort::AllocatorWithDefaultOptions allocator;
encoder_output_size_ =
atoi(model_metadata.LookupCustomMetadataMap("output_size", allocator));
num_blocks_ =
atoi(model_metadata.LookupCustomMetadataMap("num_blocks", allocator));
head_ = atoi(model_metadata.LookupCustomMetadataMap("head", allocator));
cnn_module_kernel_ = atoi(
model_metadata.LookupCustomMetadataMap("cnn_module_kernel", allocator));
subsampling_rate_ = atoi(
model_metadata.LookupCustomMetadataMap("subsampling_rate", allocator));
right_context_ =
atoi(model_metadata.LookupCustomMetadataMap("right_context", allocator));
sos_ = atoi(model_metadata.LookupCustomMetadataMap("sos_symbol", allocator));
eos_ = atoi(model_metadata.LookupCustomMetadataMap("eos_symbol", allocator));
is_bidecoder_ = atoi(model_metadata.LookupCustomMetadataMap(
"is_bidirectional_decoder", allocator));
chunk_size_ =
atoi(model_metadata.LookupCustomMetadataMap("chunk_size", allocator));
num_left_chunks_ =
atoi(model_metadata.LookupCustomMetadataMap("left_chunks", allocator));
LOG(INFO) << "Onnx Model Info:";
LOG(INFO) << "\tencoder_output_size " << encoder_output_size_;
LOG(INFO) << "\tnum_blocks " << num_blocks_;
LOG(INFO) << "\thead " << head_;
LOG(INFO) << "\tcnn_module_kernel " << cnn_module_kernel_;
LOG(INFO) << "\tsubsampling_rate " << subsampling_rate_;
LOG(INFO) << "\tright_context " << right_context_;
LOG(INFO) << "\tsos " << sos_;
LOG(INFO) << "\teos " << eos_;
LOG(INFO) << "\tis bidirectional decoder " << is_bidecoder_;
LOG(INFO) << "\tchunk_size " << chunk_size_;
LOG(INFO) << "\tnum_left_chunks " << num_left_chunks_;
// 3. Read model nodes
LOG(INFO) << "Onnx Encoder:";
GetInputOutputInfo(encoder_session_, &encoder_in_names_, &encoder_out_names_);
LOG(INFO) << "Onnx CTC:";
GetInputOutputInfo(ctc_session_, &ctc_in_names_, &ctc_out_names_);
LOG(INFO) << "Onnx Rescore:";
GetInputOutputInfo(rescore_session_, &rescore_in_names_, &rescore_out_names_);
}
U2OnnxNnet::U2OnnxNnet(const ModelOptions& opts) : opts_(opts) {
LoadModel(opts_.model_path);
}
// shallow copy
U2OnnxNnet::U2OnnxNnet(const U2OnnxNnet& other) {
// metadatas
encoder_output_size_ = other.encoder_output_size_;
num_blocks_ = other.num_blocks_;
head_ = other.head_;
cnn_module_kernel_ = other.cnn_module_kernel_;
right_context_ = other.right_context_;
subsampling_rate_ = other.subsampling_rate_;
sos_ = other.sos_;
eos_ = other.eos_;
is_bidecoder_ = other.is_bidecoder_;
chunk_size_ = other.chunk_size_;
num_left_chunks_ = other.num_left_chunks_;
offset_ = other.offset_;
// sessions
encoder_session_ = other.encoder_session_;
ctc_session_ = other.ctc_session_;
rescore_session_ = other.rescore_session_;
// node names
encoder_in_names_ = other.encoder_in_names_;
encoder_out_names_ = other.encoder_out_names_;
ctc_in_names_ = other.ctc_in_names_;
ctc_out_names_ = other.ctc_out_names_;
rescore_in_names_ = other.rescore_in_names_;
rescore_out_names_ = other.rescore_out_names_;
}
void U2OnnxNnet::GetInputOutputInfo(
const std::shared_ptr<Ort::Session>& session,
std::vector<const char*>* in_names, std::vector<const char*>* out_names) {
Ort::AllocatorWithDefaultOptions allocator;
// Input info
int num_nodes = session->GetInputCount();
in_names->resize(num_nodes);
for (int i = 0; i < num_nodes; ++i) {
char* name = session->GetInputName(i, allocator);
Ort::TypeInfo type_info = session->GetInputTypeInfo(i);
auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
ONNXTensorElementDataType type = tensor_info.GetElementType();
std::vector<int64_t> node_dims = tensor_info.GetShape();
std::stringstream shape;
for (auto j : node_dims) {
shape << j;
shape << " ";
}
LOG(INFO) << "\tInput " << i << " : name=" << name << " type=" << type
<< " dims=" << shape.str();
(*in_names)[i] = name;
}
// Output info
num_nodes = session->GetOutputCount();
out_names->resize(num_nodes);
for (int i = 0; i < num_nodes; ++i) {
char* name = session->GetOutputName(i, allocator);
Ort::TypeInfo type_info = session->GetOutputTypeInfo(i);
auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
ONNXTensorElementDataType type = tensor_info.GetElementType();
std::vector<int64_t> node_dims = tensor_info.GetShape();
std::stringstream shape;
for (auto j : node_dims) {
shape << j;
shape << " ";
}
LOG(INFO) << "\tOutput " << i << " : name=" << name << " type=" << type
<< " dims=" << shape.str();
(*out_names)[i] = name;
}
}
std::shared_ptr<NnetBase> U2OnnxNnet::Clone() const {
auto asr_model = std::make_shared<U2OnnxNnet>(*this);
// reset inner state for new decoding
asr_model->Reset();
return asr_model;
}
void U2OnnxNnet::Reset() {
offset_ = 0;
encoder_outs_.clear();
cached_feats_.clear();
// Reset att_cache
Ort::MemoryInfo memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
if (num_left_chunks_ > 0) {
int required_cache_size = chunk_size_ * num_left_chunks_;
offset_ = required_cache_size;
att_cache_.resize(num_blocks_ * head_ * required_cache_size *
encoder_output_size_ / head_ * 2,
0.0);
const int64_t att_cache_shape[] = {num_blocks_, head_, required_cache_size,
encoder_output_size_ / head_ * 2};
att_cache_ort_ = Ort::Value::CreateTensor<float>(
memory_info, att_cache_.data(), att_cache_.size(), att_cache_shape, 4);
} else {
att_cache_.resize(0, 0.0);
const int64_t att_cache_shape[] = {num_blocks_, head_, 0,
encoder_output_size_ / head_ * 2};
att_cache_ort_ = Ort::Value::CreateTensor<float>(
memory_info, att_cache_.data(), att_cache_.size(), att_cache_shape, 4);
}
// Reset cnn_cache
cnn_cache_.resize(
num_blocks_ * encoder_output_size_ * (cnn_module_kernel_ - 1), 0.0);
const int64_t cnn_cache_shape[] = {num_blocks_, 1, encoder_output_size_,
cnn_module_kernel_ - 1};
cnn_cache_ort_ = Ort::Value::CreateTensor<float>(
memory_info, cnn_cache_.data(), cnn_cache_.size(), cnn_cache_shape, 4);
}
void U2OnnxNnet::FeedForward(const std::vector<BaseFloat>& features,
const int32& feature_dim,
NnetOut* out) {
kaldi::Timer timer;
std::vector<kaldi::BaseFloat> ctc_probs;
ForwardEncoderChunkImpl(
features, feature_dim, &out->logprobs, &out->vocab_dim);
VLOG(1) << "FeedForward cost: " << timer.Elapsed() << " sec. "
<< features.size() / feature_dim << " frames.";
}
void U2OnnxNnet::ForwardEncoderChunkImpl(
const std::vector<kaldi::BaseFloat>& chunk_feats,
const int32& feat_dim,
std::vector<kaldi::BaseFloat>* out_prob,
int32* vocab_dim) {
Ort::MemoryInfo memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
// 1. Prepare onnx required data, splice cached_feature_ and chunk_feats
// chunk
int num_frames = chunk_feats.size() / feat_dim;
VLOG(3) << "num_frames: " << num_frames;
VLOG(3) << "feat_dim: " << feat_dim;
const int feature_dim = feat_dim;
std::vector<float> feats;
feats.insert(feats.end(), chunk_feats.begin(), chunk_feats.end());
const int64_t feats_shape[3] = {1, num_frames, feature_dim};
Ort::Value feats_ort = Ort::Value::CreateTensor<float>(
memory_info, feats.data(), feats.size(), feats_shape, 3);
// offset
int64_t offset_int64 = static_cast<int64_t>(offset_);
Ort::Value offset_ort = Ort::Value::CreateTensor<int64_t>(
memory_info, &offset_int64, 1, std::vector<int64_t>{}.data(), 0);
// required_cache_size
int64_t required_cache_size = chunk_size_ * num_left_chunks_;
Ort::Value required_cache_size_ort = Ort::Value::CreateTensor<int64_t>(
memory_info, &required_cache_size, 1, std::vector<int64_t>{}.data(), 0);
// att_mask
Ort::Value att_mask_ort{nullptr};
std::vector<uint8_t> att_mask(required_cache_size + chunk_size_, 1);
if (num_left_chunks_ > 0) {
int chunk_idx = offset_ / chunk_size_ - num_left_chunks_;
if (chunk_idx < num_left_chunks_) {
for (int i = 0; i < (num_left_chunks_ - chunk_idx) * chunk_size_; ++i) {
att_mask[i] = 0;
}
}
const int64_t att_mask_shape[] = {1, 1, required_cache_size + chunk_size_};
att_mask_ort = Ort::Value::CreateTensor<bool>(
memory_info, reinterpret_cast<bool*>(att_mask.data()), att_mask.size(),
att_mask_shape, 3);
}
// 2. Encoder chunk forward
std::vector<Ort::Value> inputs;
for (auto name : encoder_in_names_) {
if (!strcmp(name, "chunk")) {
inputs.emplace_back(std::move(feats_ort));
} else if (!strcmp(name, "offset")) {
inputs.emplace_back(std::move(offset_ort));
} else if (!strcmp(name, "required_cache_size")) {
inputs.emplace_back(std::move(required_cache_size_ort));
} else if (!strcmp(name, "att_cache")) {
inputs.emplace_back(std::move(att_cache_ort_));
} else if (!strcmp(name, "cnn_cache")) {
inputs.emplace_back(std::move(cnn_cache_ort_));
} else if (!strcmp(name, "att_mask")) {
inputs.emplace_back(std::move(att_mask_ort));
}
}
std::vector<Ort::Value> ort_outputs = encoder_session_->Run(
Ort::RunOptions{nullptr}, encoder_in_names_.data(), inputs.data(),
inputs.size(), encoder_out_names_.data(), encoder_out_names_.size());
offset_ += static_cast<int>(
ort_outputs[0].GetTensorTypeAndShapeInfo().GetShape()[1]);
att_cache_ort_ = std::move(ort_outputs[1]);
cnn_cache_ort_ = std::move(ort_outputs[2]);
std::vector<Ort::Value> ctc_inputs;
ctc_inputs.emplace_back(std::move(ort_outputs[0]));
std::vector<Ort::Value> ctc_ort_outputs = ctc_session_->Run(
Ort::RunOptions{nullptr}, ctc_in_names_.data(), ctc_inputs.data(),
ctc_inputs.size(), ctc_out_names_.data(), ctc_out_names_.size());
encoder_outs_.push_back(std::move(ctc_inputs[0]));
float* logp_data = ctc_ort_outputs[0].GetTensorMutableData<float>();
auto type_info = ctc_ort_outputs[0].GetTensorTypeAndShapeInfo();
// Copy to output, (B=1,T,D)
std::vector<int64_t> ctc_log_probs_shape = type_info.GetShape();
CHECK_EQ(ctc_log_probs_shape.size(), 3);
int B = ctc_log_probs_shape[0];
CHECK_EQ(B, 1);
int T = ctc_log_probs_shape[1];
int D = ctc_log_probs_shape[2];
*vocab_dim = D;
out_prob->resize(T * D);
std::memcpy(
out_prob->data(), logp_data, T * D * sizeof(kaldi::BaseFloat));
return;
}
float U2OnnxNnet::ComputeAttentionScore(const float* prob,
const std::vector<int>& hyp, int eos,
int decode_out_len) {
float score = 0.0f;
for (size_t j = 0; j < hyp.size(); ++j) {
score += *(prob + j * decode_out_len + hyp[j]);
}
score += *(prob + hyp.size() * decode_out_len + eos);
return score;
}
void U2OnnxNnet::AttentionRescoring(const std::vector<std::vector<int>>& hyps,
float reverse_weight,
std::vector<float>* rescoring_score) {
Ort::MemoryInfo memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
CHECK(rescoring_score != nullptr);
int num_hyps = hyps.size();
rescoring_score->resize(num_hyps, 0.0f);
if (num_hyps == 0) {
return;
}
// No encoder output
if (encoder_outs_.size() == 0) {
return;
}
std::vector<int64_t> hyps_lens;
int max_hyps_len = 0;
for (size_t i = 0; i < num_hyps; ++i) {
int length = hyps[i].size() + 1;
max_hyps_len = std::max(length, max_hyps_len);
hyps_lens.emplace_back(static_cast<int64_t>(length));
}
std::vector<float> rescore_input;
int encoder_len = 0;
for (int i = 0; i < encoder_outs_.size(); i++) {
float* encoder_outs_data = encoder_outs_[i].GetTensorMutableData<float>();
auto type_info = encoder_outs_[i].GetTensorTypeAndShapeInfo();
for (int j = 0; j < type_info.GetElementCount(); j++) {
rescore_input.emplace_back(encoder_outs_data[j]);
}
encoder_len += type_info.GetShape()[1];
}
const int64_t decode_input_shape[] = {1, encoder_len, encoder_output_size_};
std::vector<int64_t> hyps_pad;
for (size_t i = 0; i < num_hyps; ++i) {
const std::vector<int>& hyp = hyps[i];
hyps_pad.emplace_back(sos_);
size_t j = 0;
for (; j < hyp.size(); ++j) {
hyps_pad.emplace_back(hyp[j]);
}
if (j == max_hyps_len - 1) {
continue;
}
for (; j < max_hyps_len - 1; ++j) {
hyps_pad.emplace_back(0);
}
}
const int64_t hyps_pad_shape[] = {num_hyps, max_hyps_len};
const int64_t hyps_lens_shape[] = {num_hyps};
Ort::Value decode_input_tensor_ = Ort::Value::CreateTensor<float>(
memory_info, rescore_input.data(), rescore_input.size(),
decode_input_shape, 3);
Ort::Value hyps_pad_tensor_ = Ort::Value::CreateTensor<int64_t>(
memory_info, hyps_pad.data(), hyps_pad.size(), hyps_pad_shape, 2);
Ort::Value hyps_lens_tensor_ = Ort::Value::CreateTensor<int64_t>(
memory_info, hyps_lens.data(), hyps_lens.size(), hyps_lens_shape, 1);
std::vector<Ort::Value> rescore_inputs;
rescore_inputs.emplace_back(std::move(hyps_pad_tensor_));
rescore_inputs.emplace_back(std::move(hyps_lens_tensor_));
rescore_inputs.emplace_back(std::move(decode_input_tensor_));
std::vector<Ort::Value> rescore_outputs = rescore_session_->Run(
Ort::RunOptions{nullptr}, rescore_in_names_.data(), rescore_inputs.data(),
rescore_inputs.size(), rescore_out_names_.data(),
rescore_out_names_.size());
float* decoder_outs_data = rescore_outputs[0].GetTensorMutableData<float>();
float* r_decoder_outs_data = rescore_outputs[1].GetTensorMutableData<float>();
auto type_info = rescore_outputs[0].GetTensorTypeAndShapeInfo();
int decode_out_len = type_info.GetShape()[2];
for (size_t i = 0; i < num_hyps; ++i) {
const std::vector<int>& hyp = hyps[i];
float score = 0.0f;
// left to right decoder score
score = ComputeAttentionScore(
decoder_outs_data + max_hyps_len * decode_out_len * i, hyp, eos_,
decode_out_len);
// Optional: Used for right to left score
float r_score = 0.0f;
if (is_bidecoder_ && reverse_weight > 0) {
std::vector<int> r_hyp(hyp.size());
std::reverse_copy(hyp.begin(), hyp.end(), r_hyp.begin());
// right to left decoder score
r_score = ComputeAttentionScore(
r_decoder_outs_data + max_hyps_len * decode_out_len * i, r_hyp, eos_,
decode_out_len);
}
// combined left-to-right and right-to-left score
(*rescoring_score)[i] =
score * (1 - reverse_weight) + r_score * reverse_weight;
}
}
void U2OnnxNnet::EncoderOuts(
std::vector<std::vector<kaldi::BaseFloat>>* encoder_out) const {
}
} //namepace ppspeech