You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
75 lines
2.6 KiB
75 lines
2.6 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.initializer as I
|
|
from paddlenlp.transformers import BertForTokenClassification
|
|
|
|
|
|
class BertBLSTMPunc(nn.Layer):
|
|
def __init__(self,
|
|
pretrained_token="bert-large-uncased",
|
|
output_size=4,
|
|
dropout=0.0,
|
|
bert_size=768,
|
|
blstm_size=128,
|
|
num_blstm_layers=2,
|
|
init_scale=0.1):
|
|
super(BertBLSTMPunc, self).__init__()
|
|
self.output_size = output_size
|
|
self.bert = BertForTokenClassification.from_pretrained(
|
|
pretrained_token, num_classes=bert_size)
|
|
# self.bert_vocab_size = vocab_size
|
|
# self.bn = nn.BatchNorm1d(segment_size*self.bert_vocab_size)
|
|
# self.fc = nn.Linear(segment_size*self.bert_vocab_size, output_size)
|
|
|
|
self.lstm = nn.LSTM(
|
|
input_size=bert_size,
|
|
hidden_size=blstm_size,
|
|
num_layers=num_blstm_layers,
|
|
direction="bidirect",
|
|
weight_ih_attr=paddle.ParamAttr(initializer=I.Uniform(
|
|
low=-init_scale, high=init_scale)),
|
|
weight_hh_attr=paddle.ParamAttr(initializer=I.Uniform(
|
|
low=-init_scale, high=init_scale)))
|
|
|
|
# NOTE dense*2 使用bert中间层 dense hidden_state self.bert_size
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.fc = nn.Linear(blstm_size * 2, output_size)
|
|
self.softmax = nn.Softmax()
|
|
|
|
def forward(self, x):
|
|
# print('input :', x.shape)
|
|
x = self.bert(x) #[0]
|
|
# print('after bert :', x.shape)
|
|
|
|
y, (_, _) = self.lstm(x)
|
|
# print('after lstm :', y.shape)
|
|
y = self.fc(self.dropout(y))
|
|
y = paddle.reshape(y, shape=[-1, self.output_size])
|
|
# print('after fc :', y.shape)
|
|
|
|
logit = self.softmax(y)
|
|
# print('after softmax :', logit.shape)
|
|
|
|
return y, logit
|
|
|
|
|
|
if __name__ == '__main__':
|
|
print('start model')
|
|
model = BertBLSTMPunc()
|
|
x = paddle.randint(low=0, high=40, shape=[2, 5])
|
|
print(x)
|
|
y, logit = model(x)
|