You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/text/speechtask/punctuation_restoration/model/BertBLSTM.py

75 lines
2.6 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.initializer as I
from paddlenlp.transformers import BertForTokenClassification
class BertBLSTMPunc(nn.Layer):
def __init__(self,
pretrained_token="bert-large-uncased",
output_size=4,
dropout=0.0,
bert_size=768,
blstm_size=128,
num_blstm_layers=2,
init_scale=0.1):
super(BertBLSTMPunc, self).__init__()
self.output_size = output_size
self.bert = BertForTokenClassification.from_pretrained(
pretrained_token, num_classes=bert_size)
# self.bert_vocab_size = vocab_size
# self.bn = nn.BatchNorm1d(segment_size*self.bert_vocab_size)
# self.fc = nn.Linear(segment_size*self.bert_vocab_size, output_size)
self.lstm = nn.LSTM(
input_size=bert_size,
hidden_size=blstm_size,
num_layers=num_blstm_layers,
direction="bidirect",
weight_ih_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)),
weight_hh_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)))
# NOTE dense*2 使用bert中间层 dense hidden_state self.bert_size
self.dropout = nn.Dropout(dropout)
self.fc = nn.Linear(blstm_size * 2, output_size)
self.softmax = nn.Softmax()
def forward(self, x):
# print('input :', x.shape)
x = self.bert(x) #[0]
# print('after bert :', x.shape)
y, (_, _) = self.lstm(x)
# print('after lstm :', y.shape)
y = self.fc(self.dropout(y))
y = paddle.reshape(y, shape=[-1, self.output_size])
# print('after fc :', y.shape)
logit = self.softmax(y)
# print('after softmax :', logit.shape)
return y, logit
if __name__ == '__main__':
print('start model')
model = BertBLSTMPunc()
x = paddle.randint(low=0, high=40, shape=[2, 5])
print(x)
y, logit = model(x)