You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
7.5 KiB
7.5 KiB
(简体中文|English)
声纹识别
介绍
声纹识别是一项用计算机程序自动提取说话人特征的技术。
这个 demo 是一个从给定音频文件提取说话人特征,它可以通过使用 PaddleSpeech
的单个命令或 python 中的几行代码来实现。
使用方法
1. 安装
请看安装文档。
你可以从 easy,medium,hard 三中方式中选择一种方式安装。
2. 准备输入
这个 demo 的输入应该是一个 WAV 文件(.wav
),并且采样率必须与模型的采样率相同。
可以下载此 demo 的示例音频:
# 该音频的内容是数字串 85236145389
wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
3. 使用方法
-
命令行 (推荐使用)
paddlespeech vector --task spk --input 85236145389.wav echo -e "demo1 85236145389.wav" > vec.job paddlespeech vector --task spk --input vec.job echo -e "demo2 85236145389.wav \n demo3 85236145389.wav" | paddlespeech vector --task spk
使用方法:
paddlespeech vector --help
参数:
input
(必须输入):用于识别的音频文件。model
:声纹任务的模型,默认值:ecapatdnn_voxceleb12
。sample_rate
:音频采样率,默认值:16000
。config
:声纹任务的参数文件,若不设置则使用预训练模型中的默认配置,默认值:None
。ckpt_path
:模型参数文件,若不设置则下载预训练模型使用,默认值:None
。device
:执行预测的设备,默认值:当前系统下 paddlepaddle 的默认 device。
输出:
demo [ -5.749211 9.505463 -8.200284 -5.2075014 5.3940268 -3.04878 1.611095 10.127234 -10.534177 -15.821609 1.2032688 -0.35080156 1.2629458 -12.643498 -2.5758228 -11.343508 2.3385992 -8.719341 14.213509 15.404744 -0.39327756 6.338786 2.688887 8.7104025 17.469526 -8.77959 7.0576906 4.648855 -1.3089896 -23.294737 8.013747 13.891729 -9.926753 5.655307 -5.9422326 -22.842539 0.6293588 -18.46266 -10.811862 9.8192625 3.0070958 3.8072643 -2.3861165 3.0821571 -14.739942 1.7594414 -0.6485091 4.485623 2.0207152 7.264915 -6.40137 23.63524 2.9711294 -22.708025 9.93719 20.354511 -10.324688 -0.700492 -8.783211 -5.27593 15.999649 3.3004563 12.747926 15.429879 4.7849145 5.6699696 -2.3826702 10.605882 3.9112158 3.1500628 15.859915 -2.1832209 -23.908653 -6.4799504 -4.5365124 -9.224193 14.568347 -10.568833 4.982321 -4.342062 0.0914714 12.645902 -5.74285 -3.2141201 -2.7173362 -6.680575 0.4757669 -5.035051 -6.7964664 16.865469 -11.54324 7.681869 0.44475392 9.708182 -8.932846 0.4123232 -4.361452 1.3948607 9.511665 0.11667654 2.9079323 6.049952 9.275183 -18.078873 6.2983274 -0.7500531 -2.725033 -7.6027865 3.3404543 2.990815 4.010979 11.000591 -2.8873312 7.1352735 -16.79663 18.495346 -14.293832 7.89578 2.2714825 22.976387 -4.875734 -3.0836344 -2.9999814 13.751918 6.448228 -11.924197 2.171869 2.0423572 -6.173772 10.778437 25.77281 -4.9495463 14.57806 0.3044315 2.6132357 -7.591999 -2.076944 9.025118 1.7834753 -3.1799617 -4.9401326 23.465864 5.1685796 -9.018578 9.037825 -4.4150195 6.859591 -12.274467 -0.88911164 5.186309 -3.9988663 -13.638606 -9.925445 -0.06329413 -3.6709652 -12.397416 -12.719869 -1.395601 2.1150916 5.7381287 -4.4691963 -3.82819 -0.84233856 -1.1604277 -13.490127 8.731719 -20.778936 -11.495662 5.8033476 -4.752041 10.833007 -6.717991 4.504732 13.4244375 1.1306485 7.3435574 1.400918 14.704036 -9.501399 7.2315617 -6.417456 1.3333273 11.872697 -0.30664724 8.8845 6.5569253 4.7948146 0.03662816 -8.704245 6.224871 -3.2701402 -11.508579 ]
-
Python API
import paddle from paddlespeech.cli import VectorExecutor vector_executor = VectorExecutor() audio_emb = vector_executor( model='ecapatdnn_voxceleb12', sample_rate=16000, config=None, # Set `config` and `ckpt_path` to None to use pretrained model. ckpt_path=None, audio_file='./85236145389.wav', force_yes=False, device=paddle.get_device()) print('Audio embedding Result: \n{}'.format(audio_emb))
输出:
# Vector Result: [ -5.749211 9.505463 -8.200284 -5.2075014 5.3940268 -3.04878 1.611095 10.127234 -10.534177 -15.821609 1.2032688 -0.35080156 1.2629458 -12.643498 -2.5758228 -11.343508 2.3385992 -8.719341 14.213509 15.404744 -0.39327756 6.338786 2.688887 8.7104025 17.469526 -8.77959 7.0576906 4.648855 -1.3089896 -23.294737 8.013747 13.891729 -9.926753 5.655307 -5.9422326 -22.842539 0.6293588 -18.46266 -10.811862 9.8192625 3.0070958 3.8072643 -2.3861165 3.0821571 -14.739942 1.7594414 -0.6485091 4.485623 2.0207152 7.264915 -6.40137 23.63524 2.9711294 -22.708025 9.93719 20.354511 -10.324688 -0.700492 -8.783211 -5.27593 15.999649 3.3004563 12.747926 15.429879 4.7849145 5.6699696 -2.3826702 10.605882 3.9112158 3.1500628 15.859915 -2.1832209 -23.908653 -6.4799504 -4.5365124 -9.224193 14.568347 -10.568833 4.982321 -4.342062 0.0914714 12.645902 -5.74285 -3.2141201 -2.7173362 -6.680575 0.4757669 -5.035051 -6.7964664 16.865469 -11.54324 7.681869 0.44475392 9.708182 -8.932846 0.4123232 -4.361452 1.3948607 9.511665 0.11667654 2.9079323 6.049952 9.275183 -18.078873 6.2983274 -0.7500531 -2.725033 -7.6027865 3.3404543 2.990815 4.010979 11.000591 -2.8873312 7.1352735 -16.79663 18.495346 -14.293832 7.89578 2.2714825 22.976387 -4.875734 -3.0836344 -2.9999814 13.751918 6.448228 -11.924197 2.171869 2.0423572 -6.173772 10.778437 25.77281 -4.9495463 14.57806 0.3044315 2.6132357 -7.591999 -2.076944 9.025118 1.7834753 -3.1799617 -4.9401326 23.465864 5.1685796 -9.018578 9.037825 -4.4150195 6.859591 -12.274467 -0.88911164 5.186309 -3.9988663 -13.638606 -9.925445 -0.06329413 -3.6709652 -12.397416 -12.719869 -1.395601 2.1150916 5.7381287 -4.4691963 -3.82819 -0.84233856 -1.1604277 -13.490127 8.731719 -20.778936 -11.495662 5.8033476 -4.752041 10.833007 -6.717991 4.504732 13.4244375 1.1306485 7.3435574 1.400918 14.704036 -9.501399 7.2315617 -6.417456 1.3333273 11.872697 -0.30664724 8.8845 6.5569253 4.7948146 0.03662816 -8.704245 6.224871 -3.2701402 -11.508579 ]
4.预训练模型
以下是 PaddleSpeech 提供的可以被命令行和 python API 使用的预训练模型列表:
模型 | 采样率 |
---|---|
ecapatdnn_voxceleb12 | 16k |