You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/examples/csmsc/tts3/README_cn.md

272 lines
14 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

(简体中文|[English](./README.md))
# 用 CSMSC 数据集训练 FastSpeech2 模型
本用例包含用于训练 [Fastspeech2](https://arxiv.org/abs/2006.04558) 模型的代码,使用 [Chinese Standard Mandarin Speech Copus](https://www.data-baker.com/open_source.html) 数据集。
## 数据集
### 下载并解压
从 [官方网站](https://test.data-baker.com/data/index/TNtts/) 下载数据集
### 获取MFA结果并解压
我们使用 [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) 去获得 fastspeech2 的音素持续时间。
你们可以从这里下载 [baker_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/BZNSYP/with_tone/baker_alignment_tone.tar.gz), 或参考 [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) 训练你自己的模型。
## 开始
假设数据集的路径是 `~/datasets/BZNSYP`.
假设CSMSC的MFA结果路径为 `./baker_alignment_tone`.
运行下面的命令会进行如下操作:
1. **设置原路径**。
2. 对数据集进行预处理。
3. 训练模型
4. 合成波形
-`metadata.jsonl` 合成波形。
- 从文本文件合成波形。
5. 使用静态模型进行推理。
```bash
./run.sh
```
您可以选择要运行的一系列阶段,或者将 `stage` 设置为 `stop-stage` 以仅使用一个阶段,例如,运行以下命令只会预处理数据集。
```bash
./run.sh --stage 0 --stop-stage 0
```
### 数据预处理
```bash
./local/preprocess.sh ${conf_path}
```
当它完成时。将在当前目录中创建 `dump` 文件夹。转储文件夹的结构如下所示。
```text
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
└── train
├── energy_stats.npy
├── norm
├── pitch_stats.npy
├── raw
└── speech_stats.npy
```
数据集分为三个部分,即 `train``dev``test` ,每个部分都包含一个 `norm``raw` 子文件夹。原始文件夹包含每个话语的语音、音调和能量特征,而 `norm` 文件夹包含规范化的特征。用于规范化特征的统计数据是从 `dump/train/*_stats.npy` 中的训练集计算出来的。
此外,还有一个 `metadata.jsonl` 在每个子文件夹中。它是一个类似表格的文件,包含音素、文本长度、语音长度、持续时间、语音特征路径、音调特征路径、能量特征路径、说话人和每个话语的 id。
### 模型训练
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
```
`./local/train.sh` 调用 `${BIN_DIR}/train.py`
以下是完整的帮助信息。
```text
usage: train.py [-h] [--config CONFIG] [--train-metadata TRAIN_METADATA]
[--dev-metadata DEV_METADATA] [--output-dir OUTPUT_DIR]
[--ngpu NGPU] [--phones-dict PHONES_DICT]
[--speaker-dict SPEAKER_DICT] [--voice-cloning VOICE_CLONING]
Train a FastSpeech2 model.
optional arguments:
-h, --help show this help message and exit
--config CONFIG fastspeech2 config file.
--train-metadata TRAIN_METADATA
training data.
--dev-metadata DEV_METADATA
dev data.
--output-dir OUTPUT_DIR
output dir.
--ngpu NGPU if ngpu=0, use cpu.
--phones-dict PHONES_DICT
phone vocabulary file.
--speaker-dict SPEAKER_DICT
speaker id map file for multiple speaker model.
--voice-cloning VOICE_CLONING
whether training voice cloning model.
```
1. `--config` 是一个 yaml 格式的配置文件,用于覆盖默认配置,位于 `conf/default.yaml`.
2. `--train-metadata``--dev-metadata` 应为 `dump` 文件夹中 `train``dev` 下的规范化元数据文件
3. `--output-dir` 是保存结果的目录。 检查点保存在此目录中的 `checkpoints/` 目录下。
4. `--ngpu` 要使用的 GPU 数,如果 ngpu==0则使用 cpu 。
5. `--phones-dict` 是音素词汇表文件的路径。
### 合成
我们使用 [parallel wavegan](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc1) 作为神经声码器vocoder
从 [pwg_baker_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_baker_ckpt_0.4.zip) 下载预训练的 parallel wavegan 模型并将其解压。
```bash
unzip pwg_baker_ckpt_0.4.zip
```
Parallel WaveGAN 检查点包含如下文件。
```text
pwg_baker_ckpt_0.4
├── pwg_default.yaml # 用于训练 parallel wavegan 的默认配置
├── pwg_snapshot_iter_400000.pdz # parallel wavegan 的模型参数
└── pwg_stats.npy # 训练平行波形时用于规范化谱图的统计数据
```
`./local/synthesize.sh` 调用 `${BIN_DIR}/../synthesize.py` 即可从 `metadata.jsonl`中合成波形。
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
```
```text
usage: synthesize.py [-h]
[--am {speedyspeech_csmsc,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc,tacotron2_ljspeech,tacotron2_aishell3}]
[--am_config AM_CONFIG] [--am_ckpt AM_CKPT]
[--am_stat AM_STAT] [--phones_dict PHONES_DICT]
[--tones_dict TONES_DICT] [--speaker_dict SPEAKER_DICT]
[--voice-cloning VOICE_CLONING]
[--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,wavernn_csmsc,hifigan_csmsc,hifigan_ljspeech,hifigan_aishell3,hifigan_vctk,style_melgan_csmsc}]
[--voc_config VOC_CONFIG] [--voc_ckpt VOC_CKPT]
[--voc_stat VOC_STAT] [--ngpu NGPU]
[--test_metadata TEST_METADATA] [--output_dir OUTPUT_DIR]
Synthesize with acoustic model & vocoder
optional arguments:
-h, --help show this help message and exit
--am {speedyspeech_csmsc,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc,tacotron2_ljspeech,tacotron2_aishell3}
Choose acoustic model type of tts task.
--am_config AM_CONFIG
Config of acoustic model.
--am_ckpt AM_CKPT Checkpoint file of acoustic model.
--am_stat AM_STAT mean and standard deviation used to normalize
spectrogram when training acoustic model.
--phones_dict PHONES_DICT
phone vocabulary file.
--tones_dict TONES_DICT
tone vocabulary file.
--speaker_dict SPEAKER_DICT
speaker id map file.
--voice-cloning VOICE_CLONING
whether training voice cloning model.
--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,wavernn_csmsc,hifigan_csmsc,hifigan_ljspeech,hifigan_aishell3,hifigan_vctk,style_melgan_csmsc}
Choose vocoder type of tts task.
--voc_config VOC_CONFIG
Config of voc.
--voc_ckpt VOC_CKPT Checkpoint file of voc.
--voc_stat VOC_STAT mean and standard deviation used to normalize
spectrogram when training voc.
--ngpu NGPU if ngpu == 0, use cpu.
--test_metadata TEST_METADATA
test metadata.
--output_dir OUTPUT_DIR
output dir.
```
`./local/synthesize_e2e.sh` 调用 `${BIN_DIR}/../synthesize_e2e.py`,即可从文本文件中合成波形。
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name}
```
```text
usage: synthesize_e2e.py [-h]
[--am {speedyspeech_csmsc,speedyspeech_aishell3,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc,tacotron2_ljspeech}]
[--am_config AM_CONFIG] [--am_ckpt AM_CKPT]
[--am_stat AM_STAT] [--phones_dict PHONES_DICT]
[--tones_dict TONES_DICT]
[--speaker_dict SPEAKER_DICT] [--spk_id SPK_ID]
[--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,style_melgan_csmsc,hifigan_csmsc,hifigan_ljspeech,hifigan_aishell3,hifigan_vctk,wavernn_csmsc}]
[--voc_config VOC_CONFIG] [--voc_ckpt VOC_CKPT]
[--voc_stat VOC_STAT] [--lang LANG]
[--inference_dir INFERENCE_DIR] [--ngpu NGPU]
[--text TEXT] [--output_dir OUTPUT_DIR]
Synthesize with acoustic model & vocoder
optional arguments:
-h, --help show this help message and exit
--am {speedyspeech_csmsc,speedyspeech_aishell3,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc,tacotron2_ljspeech}
Choose acoustic model type of tts task.
--am_config AM_CONFIG
Config of acoustic model.
--am_ckpt AM_CKPT Checkpoint file of acoustic model.
--am_stat AM_STAT mean and standard deviation used to normalize
spectrogram when training acoustic model.
--phones_dict PHONES_DICT
phone vocabulary file.
--tones_dict TONES_DICT
tone vocabulary file.
--speaker_dict SPEAKER_DICT
speaker id map file.
--spk_id SPK_ID spk id for multi speaker acoustic model
--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,style_melgan_csmsc,hifigan_csmsc,hifigan_ljspeech,hifigan_aishell3,hifigan_vctk,wavernn_csmsc}
Choose vocoder type of tts task.
--voc_config VOC_CONFIG
Config of voc.
--voc_ckpt VOC_CKPT Checkpoint file of voc.
--voc_stat VOC_STAT mean and standard deviation used to normalize
spectrogram when training voc.
--lang LANG Choose model language. zh or en
--inference_dir INFERENCE_DIR
dir to save inference models
--ngpu NGPU if ngpu == 0, use cpu.
--text TEXT text to synthesize, a 'utt_id sentence' pair per line.
--output_dir OUTPUT_DIR
output dir.
```
1. `--am` 声学模型格式是否符合 {model_name}_{dataset}
2. `--am_config`, `--am_ckpt`, `--am_stat``--phones_dict` 是声学模型的参数,对应于 fastspeech2 预训练模型中的 4 个文件。
3. `--voc` 声码器(vocoder)格式是否符合 {model_name}_{dataset}
4. `--voc_config`, `--voc_ckpt`, `--voc_stat` 是声码器的参数,对应于 parallel wavegan 预训练模型中的 3 个文件。
5. `--lang` 对应模型的语言可以是 `zh``en`
6. `--test_metadata` 应为 `dump` 文件夹中 `test` 下的规范化元数据文件、
7. `--text` 是文本文件,其中包含要合成的句子。
8. `--output_dir` 是保存合成音频文件的目录。
9. `--ngpu` 要使用的GPU数如果 ngpu==0则使用 cpu 。
### 推理
在合成之后,我们将在 `${train_output_path}/inference` 中得到 fastspeech2 和 pwgan 的静态模型
`./local/inference.sh` 调用 `${BIN_DIR}/inference.py` 为 fastspeech2 + pwgan 综合提供了一个 paddle 静态模型推理示例。
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/inference.sh ${train_output_path}
```
## 预训练模型
预先训练的 FastSpeech2 模型,在音频边缘没有空白音频:
- [fastspeech2_nosil_baker_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_baker_ckpt_0.4.zip)
- [fastspeech2_conformer_baker_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_conformer_baker_ckpt_0.5.zip)
静态模型可以在这里下载 [fastspeech2_nosil_baker_static_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_baker_static_0.4.zip).
Model | Step | eval/loss | eval/l1_loss | eval/duration_loss | eval/pitch_loss| eval/energy_loss
:-------------:| :------------:| :-----: | :-----: | :--------: |:--------:|:---------:
default| 2(gpu) x 76000|1.0991|0.59132|0.035815|0.31915|0.15287|
conformer| 2(gpu) x 76000|1.0675|0.56103|0.035869|0.31553|0.15509|
FastSpeech2检查点包含下列文件。
```text
fastspeech2_nosil_baker_ckpt_0.4
├── default.yaml # 用于训练 fastspeech2 的默认配置
├── phone_id_map.txt # 训练 fastspeech2 时的音素词汇文件
├── snapshot_iter_76000.pdz # 模型参数和优化器状态
└── speech_stats.npy # 训练 fastspeech2 时用于规范化频谱图的统计数据
```
您可以使用以下脚本通过使用预训练的 fastspeech2 和 parallel wavegan 模型为 `${BIN_DIR}/../sentences.txt` 合成句子
```bash
source path.sh
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_csmsc \
--am_config=fastspeech2_nosil_baker_ckpt_0.4/default.yaml \
--am_ckpt=fastspeech2_nosil_baker_ckpt_0.4/snapshot_iter_76000.pdz \
--am_stat=fastspeech2_nosil_baker_ckpt_0.4/speech_stats.npy \
--voc=pwgan_csmsc \
--voc_config=pwg_baker_ckpt_0.4/pwg_default.yaml \
--voc_ckpt=pwg_baker_ckpt_0.4/pwg_snapshot_iter_400000.pdz \
--voc_stat=pwg_baker_ckpt_0.4/pwg_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=exp/default/test_e2e \
--inference_dir=exp/default/inference \
--phones_dict=fastspeech2_nosil_baker_ckpt_0.4/phone_id_map.txt
```