You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/error_rate.py

138 lines
4.3 KiB

# -- * -- coding: utf-8 -- * --
import numpy as np
def levenshtein_distance(ref, hyp):
ref_len = len(ref)
hyp_len = len(hyp)
# special case
if ref == hyp:
return 0
if ref_len == 0:
return hyp_len
if hyp_len == 0:
return ref_len
distance = np.zeros((ref_len + 1, hyp_len + 1), dtype=np.int64)
# initialization distance matrix
for j in xrange(hyp_len + 1):
distance[0][j] = j
for i in xrange(ref_len + 1):
distance[i][0] = i
# calculate levenshtein distance
for i in xrange(1, ref_len + 1):
for j in xrange(1, hyp_len + 1):
if ref[i - 1] == hyp[j - 1]:
distance[i][j] = distance[i - 1][j - 1]
else:
s_num = distance[i - 1][j - 1] + 1
i_num = distance[i][j - 1] + 1
d_num = distance[i - 1][j] + 1
distance[i][j] = min(s_num, i_num, d_num)
return distance[ref_len][hyp_len]
def wer(reference, hypophysis, delimiter=' ', filter_none=True):
"""
Calculate word error rate (WER). WER is a popular evaluation metric used
in speech recognition. It compares a reference with an hypophysis and
is defined like this:
.. math::
WER = (Sw + Dw + Iw) / Nw
where
.. code-block:: text
Sw is the number of words subsituted,
Dw is the number of words deleted,
Iw is the number of words inserted,
Nw is the number of words in the reference
We can use levenshtein distance to calculate WER. Please draw an attention
that this function will truncate the beginning and ending delimiter for
reference and hypophysis sentences before calculating WER.
:param reference: The reference sentence.
:type reference: str
:param hypophysis: The hypophysis sentence.
:type reference: str
:param delimiter: Delimiter of input sentences.
:type delimiter: char
:param filter_none: Whether to remove None value when splitting sentence.
:type filter_none: bool
:return: WER
:rtype: float
"""
if len(reference.strip(delimiter)) == 0:
raise ValueError("Reference's word number should be greater than 0.")
if filter_none == True:
ref_words = filter(None, reference.strip(delimiter).split(delimiter))
hyp_words = filter(None, hypophysis.strip(delimiter).split(delimiter))
else:
ref_words = reference.strip(delimiter).split(delimiter)
hyp_words = reference.strip(delimiter).split(delimiter)
edit_distance = levenshtein_distance(ref_words, hyp_words)
wer = float(edit_distance) / len(ref_words)
return wer
def cer(reference, hypophysis, squeeze=True, ignore_case=False, strip_char=''):
"""
Calculate charactor error rate (CER). CER will compare reference text and
hypophysis text in char-level. CER is defined as:
.. math::
CER = (Sc + Dc + Ic) / Nc
where
.. code-block:: text
Sc is the number of character substituted,
Dc is the number of deleted,
Ic is the number of inserted
Nc is the number of characters in the reference
We can use levenshtein distance to calculate CER. Chinese input should be
encoded to unicode.
:param reference: The reference sentence.
:type reference: str
:param hypophysis: The hypophysis sentence.
:type reference: str
:param squeeze: If set true, consecutive space character
will be squeezed to one
:type squeeze: bool
:param ignore_case: Whether case-sensitive or not.
:type ignore_case: bool
:param strip_char: If not set to '', strip_char in beginning and ending of
sentence will be truncated.
:type strip_char: char
:return: CER
:rtype: float
"""
if ignore_case == True:
reference = reference.lower()
hypophysis = hypophysis.lower()
if strip_char != '':
reference = reference.strip(strip_char)
hypophysis = hypophysis.strip(strip_char)
if squeeze == True:
reference = ' '.join(filter(None, reference.split(' ')))
hypophysis = ' '.join(filter(None, hypophysis.split(' ')))
if len(reference) == 0:
raise ValueError("Length of reference should be greater than 0.")
edit_distance = levenshtein_distance(reference, hypophysis)
cer = float(edit_distance) / len(reference)
return cer