# -- * -- coding: utf-8 -- * -- import numpy as np def levenshtein_distance(ref, hyp): ref_len = len(ref) hyp_len = len(hyp) # special case if ref == hyp: return 0 if ref_len == 0: return hyp_len if hyp_len == 0: return ref_len distance = np.zeros((ref_len + 1, hyp_len + 1), dtype=np.int64) # initialization distance matrix for j in xrange(hyp_len + 1): distance[0][j] = j for i in xrange(ref_len + 1): distance[i][0] = i # calculate levenshtein distance for i in xrange(1, ref_len + 1): for j in xrange(1, hyp_len + 1): if ref[i - 1] == hyp[j - 1]: distance[i][j] = distance[i - 1][j - 1] else: s_num = distance[i - 1][j - 1] + 1 i_num = distance[i][j - 1] + 1 d_num = distance[i - 1][j] + 1 distance[i][j] = min(s_num, i_num, d_num) return distance[ref_len][hyp_len] def wer(reference, hypophysis, delimiter=' ', filter_none=True): """ Calculate word error rate (WER). WER is a popular evaluation metric used in speech recognition. It compares a reference with an hypophysis and is defined like this: .. math:: WER = (Sw + Dw + Iw) / Nw where .. code-block:: text Sw is the number of words subsituted, Dw is the number of words deleted, Iw is the number of words inserted, Nw is the number of words in the reference We can use levenshtein distance to calculate WER. Please draw an attention that this function will truncate the beginning and ending delimiter for reference and hypophysis sentences before calculating WER. :param reference: The reference sentence. :type reference: str :param hypophysis: The hypophysis sentence. :type reference: str :param delimiter: Delimiter of input sentences. :type delimiter: char :param filter_none: Whether to remove None value when splitting sentence. :type filter_none: bool :return: WER :rtype: float """ if len(reference.strip(delimiter)) == 0: raise ValueError("Reference's word number should be greater than 0.") if filter_none == True: ref_words = filter(None, reference.strip(delimiter).split(delimiter)) hyp_words = filter(None, hypophysis.strip(delimiter).split(delimiter)) else: ref_words = reference.strip(delimiter).split(delimiter) hyp_words = reference.strip(delimiter).split(delimiter) edit_distance = levenshtein_distance(ref_words, hyp_words) wer = float(edit_distance) / len(ref_words) return wer def cer(reference, hypophysis, squeeze=True, ignore_case=False, strip_char=''): """ Calculate charactor error rate (CER). CER will compare reference text and hypophysis text in char-level. CER is defined as: .. math:: CER = (Sc + Dc + Ic) / Nc where .. code-block:: text Sc is the number of character substituted, Dc is the number of deleted, Ic is the number of inserted Nc is the number of characters in the reference We can use levenshtein distance to calculate CER. Chinese input should be encoded to unicode. :param reference: The reference sentence. :type reference: str :param hypophysis: The hypophysis sentence. :type reference: str :param squeeze: If set true, consecutive space character will be squeezed to one :type squeeze: bool :param ignore_case: Whether case-sensitive or not. :type ignore_case: bool :param strip_char: If not set to '', strip_char in beginning and ending of sentence will be truncated. :type strip_char: char :return: CER :rtype: float """ if ignore_case == True: reference = reference.lower() hypophysis = hypophysis.lower() if strip_char != '': reference = reference.strip(strip_char) hypophysis = hypophysis.strip(strip_char) if squeeze == True: reference = ' '.join(filter(None, reference.split(' '))) hypophysis = ' '.join(filter(None, hypophysis.split(' '))) if len(reference) == 0: raise ValueError("Length of reference should be greater than 0.") edit_distance = levenshtein_distance(reference, hypophysis) cer = float(edit_distance) / len(reference) return cer