|
|
(简体中文|[English](./README.md))
|
|
|
|
|
|
# 声纹识别
|
|
|
## 介绍
|
|
|
声纹识别是一项用计算机程序自动提取说话人特征的技术。
|
|
|
|
|
|
这个 demo 是一个从给定音频文件提取说话人特征,它可以通过使用 `PaddleSpeech` 的单个命令或 python 中的几行代码来实现。
|
|
|
|
|
|
## 使用方法
|
|
|
### 1. 安装
|
|
|
请看[安装文档](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install_cn.md)。
|
|
|
|
|
|
你可以从 easy,medium,hard 三中方式中选择一种方式安装。
|
|
|
|
|
|
### 2. 准备输入
|
|
|
这个 demo 的输入应该是一个 WAV 文件(`.wav`),并且采样率必须与模型的采样率相同。
|
|
|
|
|
|
可以下载此 demo 的示例音频:
|
|
|
```bash
|
|
|
# 该音频的内容是数字串 85236145389
|
|
|
wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
|
|
|
```
|
|
|
### 3. 使用方法
|
|
|
- 命令行 (推荐使用)
|
|
|
```bash
|
|
|
paddlespeech vector --task spk --input 85236145389.wav
|
|
|
|
|
|
echo -e "demo1 85236145389.wav" > vec.job
|
|
|
paddlespeech vector --task spk --input vec.job
|
|
|
|
|
|
echo -e "demo2 85236145389.wav \n demo3 85236145389.wav" | paddlespeech vector --task spk
|
|
|
```
|
|
|
|
|
|
使用方法:
|
|
|
```bash
|
|
|
paddlespeech asr --help
|
|
|
```
|
|
|
参数:
|
|
|
- `input`(必须输入):用于识别的音频文件。
|
|
|
- `model`:声纹任务的模型,默认值:`ecapatdnn_voxceleb12`。
|
|
|
- `sample_rate`:音频采样率,默认值:`16000`。
|
|
|
- `config`:声纹任务的参数文件,若不设置则使用预训练模型中的默认配置,默认值:`None`。
|
|
|
- `ckpt_path`:模型参数文件,若不设置则下载预训练模型使用,默认值:`None`。
|
|
|
- `device`:执行预测的设备,默认值:当前系统下 paddlepaddle 的默认 device。
|
|
|
|
|
|
输出:
|
|
|
```bash
|
|
|
demo [ -5.749211 9.505463 -8.200284 -5.2075014 5.3940268
|
|
|
-3.04878 1.611095 10.127234 -10.534177 -15.821609
|
|
|
1.2032688 -0.35080156 1.2629458 -12.643498 -2.5758228
|
|
|
-11.343508 2.3385992 -8.719341 14.213509 15.404744
|
|
|
-0.39327756 6.338786 2.688887 8.7104025 17.469526
|
|
|
-8.77959 7.0576906 4.648855 -1.3089896 -23.294737
|
|
|
8.013747 13.891729 -9.926753 5.655307 -5.9422326
|
|
|
-22.842539 0.6293588 -18.46266 -10.811862 9.8192625
|
|
|
3.0070958 3.8072643 -2.3861165 3.0821571 -14.739942
|
|
|
1.7594414 -0.6485091 4.485623 2.0207152 7.264915
|
|
|
-6.40137 23.63524 2.9711294 -22.708025 9.93719
|
|
|
20.354511 -10.324688 -0.700492 -8.783211 -5.27593
|
|
|
15.999649 3.3004563 12.747926 15.429879 4.7849145
|
|
|
5.6699696 -2.3826702 10.605882 3.9112158 3.1500628
|
|
|
15.859915 -2.1832209 -23.908653 -6.4799504 -4.5365124
|
|
|
-9.224193 14.568347 -10.568833 4.982321 -4.342062
|
|
|
0.0914714 12.645902 -5.74285 -3.2141201 -2.7173362
|
|
|
-6.680575 0.4757669 -5.035051 -6.7964664 16.865469
|
|
|
-11.54324 7.681869 0.44475392 9.708182 -8.932846
|
|
|
0.4123232 -4.361452 1.3948607 9.511665 0.11667654
|
|
|
2.9079323 6.049952 9.275183 -18.078873 6.2983274
|
|
|
-0.7500531 -2.725033 -7.6027865 3.3404543 2.990815
|
|
|
4.010979 11.000591 -2.8873312 7.1352735 -16.79663
|
|
|
18.495346 -14.293832 7.89578 2.2714825 22.976387
|
|
|
-4.875734 -3.0836344 -2.9999814 13.751918 6.448228
|
|
|
-11.924197 2.171869 2.0423572 -6.173772 10.778437
|
|
|
25.77281 -4.9495463 14.57806 0.3044315 2.6132357
|
|
|
-7.591999 -2.076944 9.025118 1.7834753 -3.1799617
|
|
|
-4.9401326 23.465864 5.1685796 -9.018578 9.037825
|
|
|
-4.4150195 6.859591 -12.274467 -0.88911164 5.186309
|
|
|
-3.9988663 -13.638606 -9.925445 -0.06329413 -3.6709652
|
|
|
-12.397416 -12.719869 -1.395601 2.1150916 5.7381287
|
|
|
-4.4691963 -3.82819 -0.84233856 -1.1604277 -13.490127
|
|
|
8.731719 -20.778936 -11.495662 5.8033476 -4.752041
|
|
|
10.833007 -6.717991 4.504732 13.4244375 1.1306485
|
|
|
7.3435574 1.400918 14.704036 -9.501399 7.2315617
|
|
|
-6.417456 1.3333273 11.872697 -0.30664724 8.8845
|
|
|
6.5569253 4.7948146 0.03662816 -8.704245 6.224871
|
|
|
-3.2701402 -11.508579 ]
|
|
|
```
|
|
|
|
|
|
- Python API
|
|
|
```python
|
|
|
import paddle
|
|
|
from paddlespeech.cli import VectorExecutor
|
|
|
|
|
|
vector_executor = VectorExecutor()
|
|
|
audio_emb = vector_executor(
|
|
|
model='ecapatdnn_voxceleb12',
|
|
|
sample_rate=16000,
|
|
|
config=None, # Set `config` and `ckpt_path` to None to use pretrained model.
|
|
|
ckpt_path=None,
|
|
|
audio_file='./zh.wav',
|
|
|
force_yes=False,
|
|
|
device=paddle.get_device())
|
|
|
print('Audio embedding Result: \n{}'.format(audio_emb))
|
|
|
```
|
|
|
|
|
|
输出:
|
|
|
```bash
|
|
|
# Vector Result:
|
|
|
[ -5.749211 9.505463 -8.200284 -5.2075014 5.3940268
|
|
|
-3.04878 1.611095 10.127234 -10.534177 -15.821609
|
|
|
1.2032688 -0.35080156 1.2629458 -12.643498 -2.5758228
|
|
|
-11.343508 2.3385992 -8.719341 14.213509 15.404744
|
|
|
-0.39327756 6.338786 2.688887 8.7104025 17.469526
|
|
|
-8.77959 7.0576906 4.648855 -1.3089896 -23.294737
|
|
|
8.013747 13.891729 -9.926753 5.655307 -5.9422326
|
|
|
-22.842539 0.6293588 -18.46266 -10.811862 9.8192625
|
|
|
3.0070958 3.8072643 -2.3861165 3.0821571 -14.739942
|
|
|
1.7594414 -0.6485091 4.485623 2.0207152 7.264915
|
|
|
-6.40137 23.63524 2.9711294 -22.708025 9.93719
|
|
|
20.354511 -10.324688 -0.700492 -8.783211 -5.27593
|
|
|
15.999649 3.3004563 12.747926 15.429879 4.7849145
|
|
|
5.6699696 -2.3826702 10.605882 3.9112158 3.1500628
|
|
|
15.859915 -2.1832209 -23.908653 -6.4799504 -4.5365124
|
|
|
-9.224193 14.568347 -10.568833 4.982321 -4.342062
|
|
|
0.0914714 12.645902 -5.74285 -3.2141201 -2.7173362
|
|
|
-6.680575 0.4757669 -5.035051 -6.7964664 16.865469
|
|
|
-11.54324 7.681869 0.44475392 9.708182 -8.932846
|
|
|
0.4123232 -4.361452 1.3948607 9.511665 0.11667654
|
|
|
2.9079323 6.049952 9.275183 -18.078873 6.2983274
|
|
|
-0.7500531 -2.725033 -7.6027865 3.3404543 2.990815
|
|
|
4.010979 11.000591 -2.8873312 7.1352735 -16.79663
|
|
|
18.495346 -14.293832 7.89578 2.2714825 22.976387
|
|
|
-4.875734 -3.0836344 -2.9999814 13.751918 6.448228
|
|
|
-11.924197 2.171869 2.0423572 -6.173772 10.778437
|
|
|
25.77281 -4.9495463 14.57806 0.3044315 2.6132357
|
|
|
-7.591999 -2.076944 9.025118 1.7834753 -3.1799617
|
|
|
-4.9401326 23.465864 5.1685796 -9.018578 9.037825
|
|
|
-4.4150195 6.859591 -12.274467 -0.88911164 5.186309
|
|
|
-3.9988663 -13.638606 -9.925445 -0.06329413 -3.6709652
|
|
|
-12.397416 -12.719869 -1.395601 2.1150916 5.7381287
|
|
|
-4.4691963 -3.82819 -0.84233856 -1.1604277 -13.490127
|
|
|
8.731719 -20.778936 -11.495662 5.8033476 -4.752041
|
|
|
10.833007 -6.717991 4.504732 13.4244375 1.1306485
|
|
|
7.3435574 1.400918 14.704036 -9.501399 7.2315617
|
|
|
-6.417456 1.3333273 11.872697 -0.30664724 8.8845
|
|
|
6.5569253 4.7948146 0.03662816 -8.704245 6.224871
|
|
|
-3.2701402 -11.508579 ]
|
|
|
```
|
|
|
|
|
|
### 4.预训练模型
|
|
|
以下是 PaddleSpeech 提供的可以被命令行和 python API 使用的预训练模型列表:
|
|
|
|
|
|
| 模型 | 采样率
|
|
|
| :--- | :---: |
|
|
|
| ecapatdnn_voxceleb12 | 16k
|
|
|
|