You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/third_party/paddle_audio/frontend/common.py

201 lines
5.6 KiB

import paddle
import numpy as np
from typing import Tuple, Optional, Union
# https://github.com/kaldi-asr/kaldi/blob/cbed4ff688/src/feat/feature-window.cc#L109
def povey_window(frame_len:int) -> np.ndarray:
win = np.empty(frame_len)
a = 2 * np.pi / (frame_len -1)
for i in range(frame_len):
win[i] = (0.5 - 0.5 * np.cos(a * i) )**0.85
return win
def hann_window(frame_len:int) -> np.ndarray:
win = np.empty(frame_len)
a = 2 * np.pi / (frame_len -1)
for i in range(frame_len):
win[i] = 0.5 - 0.5 * np.cos(a * i)
return win
def sine_window(frame_len:int) -> np.ndarray:
win = np.empty(frame_len)
a = 2 * np.pi / (frame_len -1)
for i in range(frame_len):
win[i] = np.sin(0.5 * a * i)
return win
def hamm_window(frame_len:int) -> np.ndarray:
win = np.empty(frame_len)
a = 2 * np.pi / (frame_len -1)
for i in range(frame_len):
win[i] = 0.54 - 0.46 * np.cos(a * i)
return win
def get_window(wintype:Optional[str], winlen:int) -> np.ndarray:
"""get window function
Args:
wintype (Optional[str]): window type.
winlen (int): window length in samples.
Raises:
ValueError: not support window.
Returns:
np.ndarray: window coeffs.
"""
# calculate window
if not wintype or wintype == 'rectangular':
window = np.ones(winlen)
elif wintype == "hann":
window = hann_window(winlen)
elif wintype == "hamm":
window = hamm_window(winlen)
elif wintype == "povey":
window = povey_window(winlen)
else:
msg = f"{wintype} Not supported yet!"
raise ValueError(msg)
return window
def dft_matrix(n_fft:int, winlen:int=None, n_bin:int=None) -> Tuple[np.ndarray, np.ndarray, int]:
# https://en.wikipedia.org/wiki/Discrete_Fourier_transform
# (n_bins, n_fft) complex
if n_bin is None:
n_bin = 1 + n_fft // 2
if winlen is None:
winlen = n_bin
# https://github.com/numpy/numpy/blob/v1.20.0/numpy/fft/_pocketfft.py#L49
kernel_size = min(n_fft, winlen)
n = np.arange(0, n_fft, 1.)
wsin = np.empty((n_bin, kernel_size)) #[Cout, kernel_size]
wcos = np.empty((n_bin, kernel_size)) #[Cout, kernel_size]
for k in range(n_bin): # Only half of the bins contain useful info
wsin[k,:] = -np.sin(2*np.pi*k*n/n_fft)[:kernel_size]
wcos[k,:] = np.cos(2*np.pi*k*n/n_fft)[:kernel_size]
w_real = wcos
w_imag = wsin
return w_real, w_imag, kernel_size
def dft_matrix_fast(n_fft:int, winlen:int=None, n_bin:int=None) -> Tuple[np.ndarray, np.ndarray, int]:
# (n_bins, n_fft) complex
if n_bin is None:
n_bin = 1 + n_fft // 2
if winlen is None:
winlen = n_bin
# https://github.com/numpy/numpy/blob/v1.20.0/numpy/fft/_pocketfft.py#L49
kernel_size = min(n_fft, winlen)
# https://en.wikipedia.org/wiki/DFT_matrix
# https://ccrma.stanford.edu/~jos/st/Matrix_Formulation_DFT.html
weight = np.fft.fft(np.eye(n_fft))[:self.n_bin, :kernel_size]
w_real = weight.real
w_imag = weight.imag
return w_real, w_imag, kernel_size
def bin2hz(bin:Union[List[int], np.ndarray], N:int, sr:int)->List[float]:
"""FFT bins to Hz.
http://practicalcryptography.com/miscellaneous/machine-learning/intuitive-guide-discrete-fourier-transform/
Args:
bins (List[int] or np.ndarray): bin index.
N (int): the number of samples, or FFT points.
sr (int): sampling rate.
Returns:
List[float]: Hz's.
"""
hz = bin * float(sr) / N
def hz2mel(hz):
"""Convert a value in Hertz to Mels
:param hz: a value in Hz. This can also be a numpy array, conversion proceeds element-wise.
:returns: a value in Mels. If an array was passed in, an identical sized array is returned.
"""
return 1127 * np.log(1+hz/700.0)
def mel2hz(mel):
"""Convert a value in Mels to Hertz
:param mel: a value in Mels. This can also be a numpy array, conversion proceeds element-wise.
:returns: a value in Hertz. If an array was passed in, an identical sized array is returned.
"""
return 700 * (np.exp(mel/1127.0)-1)
def rms_to_db(rms: float):
"""Root Mean Square to dB.
Args:
rms ([float]): root mean square
Returns:
float: dB
"""
return 20.0 * math.log10(max(1e-16, rms))
def rms_to_dbfs(rms: float):
"""Root Mean Square to dBFS.
https://fireattack.wordpress.com/2017/02/06/replaygain-loudness-normalization-and-applications/
Audio is mix of sine wave, so 1 amp sine wave's Full scale is 0.7071, equal to -3.0103dB.
dB = dBFS + 3.0103
dBFS = db - 3.0103
e.g. 0 dB = -3.0103 dBFS
Args:
rms ([float]): root mean square
Returns:
float: dBFS
"""
return rms_to_db(rms) - 3.0103
def max_dbfs(sample_data: np.ndarray):
"""Peak dBFS based on the maximum energy sample.
Args:
sample_data ([np.ndarray]): float array, [-1, 1].
Returns:
float: dBFS
"""
# Peak dBFS based on the maximum energy sample. Will prevent overdrive if used for normalization.
return rms_to_dbfs(max(abs(np.min(sample_data)), abs(np.max(sample_data))))
def mean_dbfs(sample_data):
"""Peak dBFS based on the RMS energy.
Args:
sample_data ([np.ndarray]): float array, [-1, 1].
Returns:
float: dBFS
"""
return rms_to_dbfs(
math.sqrt(np.mean(np.square(sample_data, dtype=np.float64))))
def gain_db_to_ratio(gain_db: float):
"""dB to ratio
Args:
gain_db (float): gain in dB
Returns:
float: scale in amp
"""
return math.pow(10.0, gain_db / 20.0)