You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
201 lines
5.6 KiB
201 lines
5.6 KiB
3 years ago
|
import paddle
|
||
|
import numpy as np
|
||
|
from typing import Tuple, Optional, Union
|
||
|
|
||
|
|
||
|
# https://github.com/kaldi-asr/kaldi/blob/cbed4ff688/src/feat/feature-window.cc#L109
|
||
|
def povey_window(frame_len:int) -> np.ndarray:
|
||
|
win = np.empty(frame_len)
|
||
|
a = 2 * np.pi / (frame_len -1)
|
||
|
for i in range(frame_len):
|
||
|
win[i] = (0.5 - 0.5 * np.cos(a * i) )**0.85
|
||
|
return win
|
||
|
|
||
|
def hann_window(frame_len:int) -> np.ndarray:
|
||
|
win = np.empty(frame_len)
|
||
|
a = 2 * np.pi / (frame_len -1)
|
||
|
for i in range(frame_len):
|
||
|
win[i] = 0.5 - 0.5 * np.cos(a * i)
|
||
|
return win
|
||
|
|
||
|
def sine_window(frame_len:int) -> np.ndarray:
|
||
|
win = np.empty(frame_len)
|
||
|
a = 2 * np.pi / (frame_len -1)
|
||
|
for i in range(frame_len):
|
||
|
win[i] = np.sin(0.5 * a * i)
|
||
|
return win
|
||
|
|
||
|
def hamm_window(frame_len:int) -> np.ndarray:
|
||
|
win = np.empty(frame_len)
|
||
|
a = 2 * np.pi / (frame_len -1)
|
||
|
for i in range(frame_len):
|
||
|
win[i] = 0.54 - 0.46 * np.cos(a * i)
|
||
|
return win
|
||
|
|
||
|
def get_window(wintype:Optional[str], winlen:int) -> np.ndarray:
|
||
|
"""get window function
|
||
|
|
||
|
Args:
|
||
|
wintype (Optional[str]): window type.
|
||
|
winlen (int): window length in samples.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: not support window.
|
||
|
|
||
|
Returns:
|
||
|
np.ndarray: window coeffs.
|
||
|
"""
|
||
|
# calculate window
|
||
|
if not wintype or wintype == 'rectangular':
|
||
|
window = np.ones(winlen)
|
||
|
elif wintype == "hann":
|
||
|
window = hann_window(winlen)
|
||
|
elif wintype == "hamm":
|
||
|
window = hamm_window(winlen)
|
||
|
elif wintype == "povey":
|
||
|
window = povey_window(winlen)
|
||
|
else:
|
||
|
msg = f"{wintype} Not supported yet!"
|
||
|
raise ValueError(msg)
|
||
|
return window
|
||
|
|
||
|
|
||
|
def dft_matrix(n_fft:int, winlen:int=None, n_bin:int=None) -> Tuple[np.ndarray, np.ndarray, int]:
|
||
|
# https://en.wikipedia.org/wiki/Discrete_Fourier_transform
|
||
|
# (n_bins, n_fft) complex
|
||
|
if n_bin is None:
|
||
|
n_bin = 1 + n_fft // 2
|
||
|
if winlen is None:
|
||
|
winlen = n_bin
|
||
|
# https://github.com/numpy/numpy/blob/v1.20.0/numpy/fft/_pocketfft.py#L49
|
||
|
kernel_size = min(n_fft, winlen)
|
||
|
|
||
|
n = np.arange(0, n_fft, 1.)
|
||
|
wsin = np.empty((n_bin, kernel_size)) #[Cout, kernel_size]
|
||
|
wcos = np.empty((n_bin, kernel_size)) #[Cout, kernel_size]
|
||
|
for k in range(n_bin): # Only half of the bins contain useful info
|
||
|
wsin[k,:] = -np.sin(2*np.pi*k*n/n_fft)[:kernel_size]
|
||
|
wcos[k,:] = np.cos(2*np.pi*k*n/n_fft)[:kernel_size]
|
||
|
w_real = wcos
|
||
|
w_imag = wsin
|
||
|
return w_real, w_imag, kernel_size
|
||
|
|
||
|
|
||
|
def dft_matrix_fast(n_fft:int, winlen:int=None, n_bin:int=None) -> Tuple[np.ndarray, np.ndarray, int]:
|
||
|
# (n_bins, n_fft) complex
|
||
|
if n_bin is None:
|
||
|
n_bin = 1 + n_fft // 2
|
||
|
if winlen is None:
|
||
|
winlen = n_bin
|
||
|
# https://github.com/numpy/numpy/blob/v1.20.0/numpy/fft/_pocketfft.py#L49
|
||
|
kernel_size = min(n_fft, winlen)
|
||
|
|
||
|
# https://en.wikipedia.org/wiki/DFT_matrix
|
||
|
# https://ccrma.stanford.edu/~jos/st/Matrix_Formulation_DFT.html
|
||
|
weight = np.fft.fft(np.eye(n_fft))[:self.n_bin, :kernel_size]
|
||
|
w_real = weight.real
|
||
|
w_imag = weight.imag
|
||
|
return w_real, w_imag, kernel_size
|
||
|
|
||
|
|
||
|
def bin2hz(bin:Union[List[int], np.ndarray], N:int, sr:int)->List[float]:
|
||
|
"""FFT bins to Hz.
|
||
|
|
||
|
http://practicalcryptography.com/miscellaneous/machine-learning/intuitive-guide-discrete-fourier-transform/
|
||
|
|
||
|
Args:
|
||
|
bins (List[int] or np.ndarray): bin index.
|
||
|
N (int): the number of samples, or FFT points.
|
||
|
sr (int): sampling rate.
|
||
|
|
||
|
Returns:
|
||
|
List[float]: Hz's.
|
||
|
"""
|
||
|
hz = bin * float(sr) / N
|
||
|
|
||
|
|
||
|
def hz2mel(hz):
|
||
|
"""Convert a value in Hertz to Mels
|
||
|
|
||
|
:param hz: a value in Hz. This can also be a numpy array, conversion proceeds element-wise.
|
||
|
:returns: a value in Mels. If an array was passed in, an identical sized array is returned.
|
||
|
"""
|
||
|
return 1127 * np.log(1+hz/700.0)
|
||
|
|
||
|
|
||
|
def mel2hz(mel):
|
||
|
"""Convert a value in Mels to Hertz
|
||
|
|
||
|
:param mel: a value in Mels. This can also be a numpy array, conversion proceeds element-wise.
|
||
|
:returns: a value in Hertz. If an array was passed in, an identical sized array is returned.
|
||
|
"""
|
||
|
return 700 * (np.exp(mel/1127.0)-1)
|
||
|
|
||
|
|
||
|
|
||
|
def rms_to_db(rms: float):
|
||
|
"""Root Mean Square to dB.
|
||
|
|
||
|
Args:
|
||
|
rms ([float]): root mean square
|
||
|
|
||
|
Returns:
|
||
|
float: dB
|
||
|
"""
|
||
|
return 20.0 * math.log10(max(1e-16, rms))
|
||
|
|
||
|
|
||
|
def rms_to_dbfs(rms: float):
|
||
|
"""Root Mean Square to dBFS.
|
||
|
https://fireattack.wordpress.com/2017/02/06/replaygain-loudness-normalization-and-applications/
|
||
|
Audio is mix of sine wave, so 1 amp sine wave's Full scale is 0.7071, equal to -3.0103dB.
|
||
|
|
||
|
dB = dBFS + 3.0103
|
||
|
dBFS = db - 3.0103
|
||
|
e.g. 0 dB = -3.0103 dBFS
|
||
|
|
||
|
Args:
|
||
|
rms ([float]): root mean square
|
||
|
|
||
|
Returns:
|
||
|
float: dBFS
|
||
|
"""
|
||
|
return rms_to_db(rms) - 3.0103
|
||
|
|
||
|
|
||
|
def max_dbfs(sample_data: np.ndarray):
|
||
|
"""Peak dBFS based on the maximum energy sample.
|
||
|
|
||
|
Args:
|
||
|
sample_data ([np.ndarray]): float array, [-1, 1].
|
||
|
|
||
|
Returns:
|
||
|
float: dBFS
|
||
|
"""
|
||
|
# Peak dBFS based on the maximum energy sample. Will prevent overdrive if used for normalization.
|
||
|
return rms_to_dbfs(max(abs(np.min(sample_data)), abs(np.max(sample_data))))
|
||
|
|
||
|
|
||
|
def mean_dbfs(sample_data):
|
||
|
"""Peak dBFS based on the RMS energy.
|
||
|
|
||
|
Args:
|
||
|
sample_data ([np.ndarray]): float array, [-1, 1].
|
||
|
|
||
|
Returns:
|
||
|
float: dBFS
|
||
|
"""
|
||
|
return rms_to_dbfs(
|
||
|
math.sqrt(np.mean(np.square(sample_data, dtype=np.float64))))
|
||
|
|
||
|
|
||
|
def gain_db_to_ratio(gain_db: float):
|
||
|
"""dB to ratio
|
||
|
|
||
|
Args:
|
||
|
gain_db (float): gain in dB
|
||
|
|
||
|
Returns:
|
||
|
float: scale in amp
|
||
|
"""
|
||
|
return math.pow(10.0, gain_db / 20.0)
|