You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
69 lines
2.7 KiB
69 lines
2.7 KiB
Audiotools is a comprehensive toolkit designed for audio processing and analysis, providing robust solutions for audio signal processing, data management, model training, and evaluation.
|
|
|
|
### Directory Structure
|
|
|
|
```
|
|
.
|
|
├── audiotools
|
|
│ ├── README.md
|
|
│ ├── __init__.py
|
|
│ ├── core
|
|
│ │ ├── __init__.py
|
|
│ │ ├── _julius.py
|
|
│ │ ├── audio_signal.py
|
|
│ │ ├── display.py
|
|
│ │ ├── dsp.py
|
|
│ │ ├── effects.py
|
|
│ │ ├── ffmpeg.py
|
|
│ │ ├── loudness.py
|
|
│ │ └── util.py
|
|
│ ├── data
|
|
│ │ ├── __init__.py
|
|
│ │ ├── datasets.py
|
|
│ │ ├── preprocess.py
|
|
│ │ └── transforms.py
|
|
│ ├── metrics
|
|
│ │ ├── __init__.py
|
|
│ │ └── quality.py
|
|
│ ├── ml
|
|
│ │ ├── __init__.py
|
|
│ │ ├── accelerator.py
|
|
│ │ ├── basemodel.py
|
|
│ │ └── decorators.py
|
|
│ ├── requirements.txt
|
|
│ └── post.py
|
|
├── tests
|
|
│ └── audiotools
|
|
│ ├── core
|
|
│ │ ├── test_audio_signal.py
|
|
│ │ ├── test_bands.py
|
|
│ │ ├── test_display.py
|
|
│ │ ├── test_dsp.py
|
|
│ │ ├── test_effects.py
|
|
│ │ ├── test_fftconv.py
|
|
│ │ ├── test_grad.py
|
|
│ │ ├── test_highpass.py
|
|
│ │ ├── test_loudness.py
|
|
│ │ ├── test_lowpass.py
|
|
│ │ └── test_util.py
|
|
│ ├── data
|
|
│ │ ├── test_datasets.py
|
|
│ │ ├── test_preprocess.py
|
|
│ │ └── test_transforms.py
|
|
│ ├── ml
|
|
│ │ ├── test_decorators.py
|
|
│ │ └── test_model.py
|
|
│ └── test_post.py
|
|
|
|
```
|
|
|
|
- **core**: Contains the core class AudioSignal, which is responsible for the fundamental representation and manipulation of audio signals.
|
|
|
|
- **data**: Primarily dedicated to storing and processing datasets, including classes and functions for data preprocessing, ensuring efficient loading and transformation of audio data.
|
|
|
|
- **metrics**: Implements functions for various audio evaluation metrics, enabling precise assessment of the performance of audio models and processing algorithms.
|
|
|
|
- **ml**: Comprises classes and methods related to model training, supporting the construction, training, and optimization of machine learning models in the context of audio.
|
|
|
|
This project aims to provide developers and researchers with an efficient and flexible framework to foster innovation and exploration across various domains of audio technology.
|