Merge pull request #1577 from Jackwaterveg/change_init

[ASR] change default initializer to kaiming_uniform
pull/1591/head
Jackwaterveg 4 years ago committed by GitHub
commit fcc1762048
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -70,7 +70,7 @@ batch_bins: 0
batch_frames_in: 0 batch_frames_in: 0
batch_frames_out: 0 batch_frames_out: 0
batch_frames_inout: 0 batch_frames_inout: 0
num_workers: 0 num_workers: 2
subsampling_factor: 1 subsampling_factor: 1
num_encs: 1 num_encs: 1
@ -80,6 +80,7 @@ num_encs: 1
n_epoch: 240 n_epoch: 240
accum_grad: 2 accum_grad: 2
global_grad_clip: 5.0 global_grad_clip: 5.0
dist_sampler: True
optim: adam optim: adam
optim_conf: optim_conf:
lr: 0.002 lr: 0.002

@ -37,6 +37,7 @@ model_conf:
ctc_weight: 0.3 ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false length_normalized_loss: false
init_type: 'kaiming_uniform'
########################################### ###########################################
# Data # # Data #
@ -75,6 +76,7 @@ num_encs: 1
n_epoch: 240 n_epoch: 240
accum_grad: 2 accum_grad: 2
global_grad_clip: 5.0 global_grad_clip: 5.0
dist_sampler: True
optim: adam optim: adam
optim_conf: optim_conf:
lr: 0.002 lr: 0.002

@ -61,16 +61,17 @@ batch_frames_in: 0
batch_frames_out: 0 batch_frames_out: 0
batch_frames_inout: 0 batch_frames_inout: 0
preprocess_config: conf/preprocess.yaml preprocess_config: conf/preprocess.yaml
num_workers: 0 num_workers: 2
subsampling_factor: 1 subsampling_factor: 1
num_encs: 1 num_encs: 1
########################################### ###########################################
# Training # # Training #
########################################### ###########################################
n_epoch: 240 n_epoch: 30
accum_grad: 2 accum_grad: 2
global_grad_clip: 5.0 global_grad_clip: 5.0
dist_sampler: False
optim: adam optim: adam
optim_conf: optim_conf:
lr: 0.002 lr: 0.002

@ -239,7 +239,7 @@ class U2Trainer(Trainer):
n_iter_processes=config.num_workers, n_iter_processes=config.num_workers,
subsampling_factor=1, subsampling_factor=1,
num_encs=1, num_encs=1,
dist_sampler=False, dist_sampler=config.get('dist_sampler', False),
shortest_first=False) shortest_first=False)
self.valid_loader = BatchDataLoader( self.valid_loader = BatchDataLoader(
@ -260,7 +260,7 @@ class U2Trainer(Trainer):
n_iter_processes=config.num_workers, n_iter_processes=config.num_workers,
subsampling_factor=1, subsampling_factor=1,
num_encs=1, num_encs=1,
dist_sampler=False, dist_sampler=config.get('dist_sampler', False),
shortest_first=False) shortest_first=False)
logger.info("Setup train/valid Dataloader!") logger.info("Setup train/valid Dataloader!")
else: else:

@ -36,6 +36,7 @@ from paddlespeech.s2t.modules.ctc import CTCDecoderBase
from paddlespeech.s2t.modules.decoder import TransformerDecoder from paddlespeech.s2t.modules.decoder import TransformerDecoder
from paddlespeech.s2t.modules.encoder import ConformerEncoder from paddlespeech.s2t.modules.encoder import ConformerEncoder
from paddlespeech.s2t.modules.encoder import TransformerEncoder from paddlespeech.s2t.modules.encoder import TransformerEncoder
from paddlespeech.s2t.modules.initializer import DefaultInitializerContext
from paddlespeech.s2t.modules.loss import LabelSmoothingLoss from paddlespeech.s2t.modules.loss import LabelSmoothingLoss
from paddlespeech.s2t.modules.mask import make_pad_mask from paddlespeech.s2t.modules.mask import make_pad_mask
from paddlespeech.s2t.modules.mask import mask_finished_preds from paddlespeech.s2t.modules.mask import mask_finished_preds
@ -72,6 +73,7 @@ class U2BaseModel(ASRInterface, nn.Layer):
assert 0.0 <= ctc_weight <= 1.0, ctc_weight assert 0.0 <= ctc_weight <= 1.0, ctc_weight
nn.Layer.__init__(self) nn.Layer.__init__(self)
# note that eos is the same as sos (equivalent ID) # note that eos is the same as sos (equivalent ID)
self.sos = vocab_size - 1 self.sos = vocab_size - 1
self.eos = vocab_size - 1 self.eos = vocab_size - 1
@ -780,9 +782,12 @@ class U2DecodeModel(U2BaseModel):
class U2Model(U2DecodeModel): class U2Model(U2DecodeModel):
def __init__(self, configs: dict): def __init__(self, configs: dict):
vocab_size, encoder, decoder, ctc = U2Model._init_from_config(configs)
model_conf = configs.get('model_conf', dict()) model_conf = configs.get('model_conf', dict())
init_type = model_conf.get("init_type", None)
with DefaultInitializerContext(init_type):
vocab_size, encoder, decoder, ctc = U2Model._init_from_config(
configs)
super().__init__( super().__init__(
vocab_size=vocab_size, vocab_size=vocab_size,
encoder=encoder, encoder=encoder,

@ -17,6 +17,8 @@ import paddle
from paddle import nn from paddle import nn
from paddle.nn import functional as F from paddle.nn import functional as F
from paddlespeech.s2t.modules.align import Conv2D
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.utils.log import Log from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog() logger = Log(__name__).getlog()
@ -51,7 +53,7 @@ class LinearGLUBlock(nn.Layer):
idim (int): input and output dimension idim (int): input and output dimension
""" """
super().__init__() super().__init__()
self.fc = nn.Linear(idim, idim * 2) self.fc = Linear(idim, idim * 2)
def forward(self, xs): def forward(self, xs):
return glu(self.fc(xs), dim=-1) return glu(self.fc(xs), dim=-1)
@ -75,7 +77,7 @@ class ConvGLUBlock(nn.Layer):
self.conv_residual = None self.conv_residual = None
if in_ch != out_ch: if in_ch != out_ch:
self.conv_residual = nn.utils.weight_norm( self.conv_residual = nn.utils.weight_norm(
nn.Conv2D( Conv2D(
in_channels=in_ch, out_channels=out_ch, kernel_size=(1, 1)), in_channels=in_ch, out_channels=out_ch, kernel_size=(1, 1)),
name='weight', name='weight',
dim=0) dim=0)
@ -86,7 +88,7 @@ class ConvGLUBlock(nn.Layer):
layers = OrderedDict() layers = OrderedDict()
if bottlececk_dim == 0: if bottlececk_dim == 0:
layers['conv'] = nn.utils.weight_norm( layers['conv'] = nn.utils.weight_norm(
nn.Conv2D( Conv2D(
in_channels=in_ch, in_channels=in_ch,
out_channels=out_ch * 2, out_channels=out_ch * 2,
kernel_size=(kernel_size, 1)), kernel_size=(kernel_size, 1)),
@ -106,7 +108,7 @@ class ConvGLUBlock(nn.Layer):
dim=0) dim=0)
layers['dropout_in'] = nn.Dropout(p=dropout) layers['dropout_in'] = nn.Dropout(p=dropout)
layers['conv_bottleneck'] = nn.utils.weight_norm( layers['conv_bottleneck'] = nn.utils.weight_norm(
nn.Conv2D( Conv2D(
in_channels=bottlececk_dim, in_channels=bottlececk_dim,
out_channels=bottlececk_dim, out_channels=bottlececk_dim,
kernel_size=(kernel_size, 1)), kernel_size=(kernel_size, 1)),
@ -115,7 +117,7 @@ class ConvGLUBlock(nn.Layer):
layers['dropout'] = nn.Dropout(p=dropout) layers['dropout'] = nn.Dropout(p=dropout)
layers['glu'] = GLU() layers['glu'] = GLU()
layers['conv_out'] = nn.utils.weight_norm( layers['conv_out'] = nn.utils.weight_norm(
nn.Conv2D( Conv2D(
in_channels=bottlececk_dim, in_channels=bottlececk_dim,
out_channels=out_ch * 2, out_channels=out_ch * 2,
kernel_size=(1, 1)), kernel_size=(1, 1)),

@ -0,0 +1,139 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import nn
from paddlespeech.s2t.modules.initializer import KaimingUniform
"""
To align the initializer between paddle and torch,
the API below are set defalut initializer with priority higger than global initializer.
"""
global_init_type = None
class LayerNorm(nn.LayerNorm):
def __init__(self,
normalized_shape,
epsilon=1e-05,
weight_attr=None,
bias_attr=None,
name=None):
if weight_attr is None:
weight_attr = paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0))
if bias_attr is None:
bias_attr = paddle.ParamAttr(
initializer=nn.initializer.Constant(0.0))
super(LayerNorm, self).__init__(normalized_shape, epsilon, weight_attr,
bias_attr, name)
class BatchNorm1D(nn.BatchNorm1D):
def __init__(self,
num_features,
momentum=0.9,
epsilon=1e-05,
weight_attr=None,
bias_attr=None,
data_format='NCL',
name=None):
if weight_attr is None:
weight_attr = paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0))
if bias_attr is None:
bias_attr = paddle.ParamAttr(
initializer=nn.initializer.Constant(0.0))
super(BatchNorm1D,
self).__init__(num_features, momentum, epsilon, weight_attr,
bias_attr, data_format, name)
class Embedding(nn.Embedding):
def __init__(self,
num_embeddings,
embedding_dim,
padding_idx=None,
sparse=False,
weight_attr=None,
name=None):
if weight_attr is None:
weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal())
super(Embedding, self).__init__(num_embeddings, embedding_dim,
padding_idx, sparse, weight_attr, name)
class Linear(nn.Linear):
def __init__(self,
in_features,
out_features,
weight_attr=None,
bias_attr=None,
name=None):
if weight_attr is None:
if global_init_type == "kaiming_uniform":
weight_attr = paddle.ParamAttr(initializer=KaimingUniform())
if bias_attr is None:
if global_init_type == "kaiming_uniform":
bias_attr = paddle.ParamAttr(initializer=KaimingUniform())
super(Linear, self).__init__(in_features, out_features, weight_attr,
bias_attr, name)
class Conv1D(nn.Conv1D):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
padding_mode='zeros',
weight_attr=None,
bias_attr=None,
data_format='NCL'):
if weight_attr is None:
if global_init_type == "kaiming_uniform":
print("set kaiming_uniform")
weight_attr = paddle.ParamAttr(initializer=KaimingUniform())
if bias_attr is None:
if global_init_type == "kaiming_uniform":
bias_attr = paddle.ParamAttr(initializer=KaimingUniform())
super(Conv1D, self).__init__(
in_channels, out_channels, kernel_size, stride, padding, dilation,
groups, padding_mode, weight_attr, bias_attr, data_format)
class Conv2D(nn.Conv2D):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
padding_mode='zeros',
weight_attr=None,
bias_attr=None,
data_format='NCHW'):
if weight_attr is None:
if global_init_type == "kaiming_uniform":
weight_attr = paddle.ParamAttr(initializer=KaimingUniform())
if bias_attr is None:
if global_init_type == "kaiming_uniform":
bias_attr = paddle.ParamAttr(initializer=KaimingUniform())
super(Conv2D, self).__init__(
in_channels, out_channels, kernel_size, stride, padding, dilation,
groups, padding_mode, weight_attr, bias_attr, data_format)

@ -22,6 +22,7 @@ import paddle
from paddle import nn from paddle import nn
from paddle.nn import initializer as I from paddle.nn import initializer as I
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.utils.log import Log from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog() logger = Log(__name__).getlog()
@ -48,10 +49,10 @@ class MultiHeadedAttention(nn.Layer):
# We assume d_v always equals d_k # We assume d_v always equals d_k
self.d_k = n_feat // n_head self.d_k = n_feat // n_head
self.h = n_head self.h = n_head
self.linear_q = nn.Linear(n_feat, n_feat) self.linear_q = Linear(n_feat, n_feat)
self.linear_k = nn.Linear(n_feat, n_feat) self.linear_k = Linear(n_feat, n_feat)
self.linear_v = nn.Linear(n_feat, n_feat) self.linear_v = Linear(n_feat, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat) self.linear_out = Linear(n_feat, n_feat)
self.dropout = nn.Dropout(p=dropout_rate) self.dropout = nn.Dropout(p=dropout_rate)
def forward_qkv(self, def forward_qkv(self,
@ -150,7 +151,7 @@ class RelPositionMultiHeadedAttention(MultiHeadedAttention):
""" """
super().__init__(n_head, n_feat, dropout_rate) super().__init__(n_head, n_feat, dropout_rate)
# linear transformation for positional encoding # linear transformation for positional encoding
self.linear_pos = nn.Linear(n_feat, n_feat, bias_attr=False) self.linear_pos = Linear(n_feat, n_feat, bias_attr=False)
# these two learnable bias are used in matrix c and matrix d # these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3 # as described in https://arxiv.org/abs/1901.02860 Section 3.3
#self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) #self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))

@ -21,6 +21,9 @@ import paddle
from paddle import nn from paddle import nn
from typeguard import check_argument_types from typeguard import check_argument_types
from paddlespeech.s2t.modules.align import BatchNorm1D
from paddlespeech.s2t.modules.align import Conv1D
from paddlespeech.s2t.modules.align import LayerNorm
from paddlespeech.s2t.utils.log import Log from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog() logger = Log(__name__).getlog()
@ -49,7 +52,7 @@ class ConvolutionModule(nn.Layer):
""" """
assert check_argument_types() assert check_argument_types()
super().__init__() super().__init__()
self.pointwise_conv1 = nn.Conv1D( self.pointwise_conv1 = Conv1D(
channels, channels,
2 * channels, 2 * channels,
kernel_size=1, kernel_size=1,
@ -73,7 +76,7 @@ class ConvolutionModule(nn.Layer):
padding = (kernel_size - 1) // 2 padding = (kernel_size - 1) // 2
self.lorder = 0 self.lorder = 0
self.depthwise_conv = nn.Conv1D( self.depthwise_conv = Conv1D(
channels, channels,
channels, channels,
kernel_size, kernel_size,
@ -87,12 +90,12 @@ class ConvolutionModule(nn.Layer):
assert norm in ['batch_norm', 'layer_norm'] assert norm in ['batch_norm', 'layer_norm']
if norm == "batch_norm": if norm == "batch_norm":
self.use_layer_norm = False self.use_layer_norm = False
self.norm = nn.BatchNorm1D(channels) self.norm = BatchNorm1D(channels)
else: else:
self.use_layer_norm = True self.use_layer_norm = True
self.norm = nn.LayerNorm(channels) self.norm = LayerNorm(channels)
self.pointwise_conv2 = nn.Conv1D( self.pointwise_conv2 = Conv1D(
channels, channels,
channels, channels,
kernel_size=1, kernel_size=1,

@ -18,6 +18,7 @@ from paddle import nn
from paddle.nn import functional as F from paddle.nn import functional as F
from typeguard import check_argument_types from typeguard import check_argument_types
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.modules.loss import CTCLoss from paddlespeech.s2t.modules.loss import CTCLoss
from paddlespeech.s2t.utils import ctc_utils from paddlespeech.s2t.utils import ctc_utils
from paddlespeech.s2t.utils.log import Log from paddlespeech.s2t.utils.log import Log
@ -69,7 +70,7 @@ class CTCDecoderBase(nn.Layer):
self.blank_id = blank_id self.blank_id = blank_id
self.odim = odim self.odim = odim
self.dropout = nn.Dropout(dropout_rate) self.dropout = nn.Dropout(dropout_rate)
self.ctc_lo = nn.Linear(enc_n_units, self.odim) self.ctc_lo = Linear(enc_n_units, self.odim)
reduction_type = "sum" if reduction else "none" reduction_type = "sum" if reduction else "none"
self.criterion = CTCLoss( self.criterion = CTCLoss(
blank=self.blank_id, blank=self.blank_id,

@ -24,6 +24,9 @@ from paddle import nn
from typeguard import check_argument_types from typeguard import check_argument_types
from paddlespeech.s2t.decoders.scorers.scorer_interface import BatchScorerInterface from paddlespeech.s2t.decoders.scorers.scorer_interface import BatchScorerInterface
from paddlespeech.s2t.modules.align import Embedding
from paddlespeech.s2t.modules.align import LayerNorm
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.modules.attention import MultiHeadedAttention from paddlespeech.s2t.modules.attention import MultiHeadedAttention
from paddlespeech.s2t.modules.decoder_layer import DecoderLayer from paddlespeech.s2t.modules.decoder_layer import DecoderLayer
from paddlespeech.s2t.modules.embedding import PositionalEncoding from paddlespeech.s2t.modules.embedding import PositionalEncoding
@ -76,21 +79,22 @@ class TransformerDecoder(BatchScorerInterface, nn.Layer):
concat_after: bool=False, ): concat_after: bool=False, ):
assert check_argument_types() assert check_argument_types()
nn.Layer.__init__(self) nn.Layer.__init__(self)
self.selfattention_layer_type = 'selfattn' self.selfattention_layer_type = 'selfattn'
attention_dim = encoder_output_size attention_dim = encoder_output_size
if input_layer == "embed": if input_layer == "embed":
self.embed = nn.Sequential( self.embed = nn.Sequential(
nn.Embedding(vocab_size, attention_dim), Embedding(vocab_size, attention_dim),
PositionalEncoding(attention_dim, positional_dropout_rate), ) PositionalEncoding(attention_dim, positional_dropout_rate), )
else: else:
raise ValueError(f"only 'embed' is supported: {input_layer}") raise ValueError(f"only 'embed' is supported: {input_layer}")
self.normalize_before = normalize_before self.normalize_before = normalize_before
self.after_norm = nn.LayerNorm(attention_dim, epsilon=1e-12) self.after_norm = LayerNorm(attention_dim, epsilon=1e-12)
self.use_output_layer = use_output_layer self.use_output_layer = use_output_layer
self.output_layer = nn.Linear(attention_dim, vocab_size) self.output_layer = Linear(attention_dim, vocab_size)
self.decoders = nn.LayerList([ self.decoders = nn.LayerList([
DecoderLayer( DecoderLayer(

@ -20,6 +20,8 @@ from typing import Tuple
import paddle import paddle
from paddle import nn from paddle import nn
from paddlespeech.s2t.modules.align import LayerNorm
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.utils.log import Log from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog() logger = Log(__name__).getlog()
@ -62,14 +64,14 @@ class DecoderLayer(nn.Layer):
self.self_attn = self_attn self.self_attn = self_attn
self.src_attn = src_attn self.src_attn = src_attn
self.feed_forward = feed_forward self.feed_forward = feed_forward
self.norm1 = nn.LayerNorm(size, epsilon=1e-12) self.norm1 = LayerNorm(size, epsilon=1e-12)
self.norm2 = nn.LayerNorm(size, epsilon=1e-12) self.norm2 = LayerNorm(size, epsilon=1e-12)
self.norm3 = nn.LayerNorm(size, epsilon=1e-12) self.norm3 = LayerNorm(size, epsilon=1e-12)
self.dropout = nn.Dropout(dropout_rate) self.dropout = nn.Dropout(dropout_rate)
self.normalize_before = normalize_before self.normalize_before = normalize_before
self.concat_after = concat_after self.concat_after = concat_after
self.concat_linear1 = nn.Linear(size + size, size) self.concat_linear1 = Linear(size + size, size)
self.concat_linear2 = nn.Linear(size + size, size) self.concat_linear2 = Linear(size + size, size)
def forward( def forward(
self, self,

@ -23,6 +23,7 @@ from paddle import nn
from typeguard import check_argument_types from typeguard import check_argument_types
from paddlespeech.s2t.modules.activation import get_activation from paddlespeech.s2t.modules.activation import get_activation
from paddlespeech.s2t.modules.align import LayerNorm
from paddlespeech.s2t.modules.attention import MultiHeadedAttention from paddlespeech.s2t.modules.attention import MultiHeadedAttention
from paddlespeech.s2t.modules.attention import RelPositionMultiHeadedAttention from paddlespeech.s2t.modules.attention import RelPositionMultiHeadedAttention
from paddlespeech.s2t.modules.conformer_convolution import ConvolutionModule from paddlespeech.s2t.modules.conformer_convolution import ConvolutionModule
@ -129,7 +130,7 @@ class BaseEncoder(nn.Layer):
d_model=output_size, dropout_rate=positional_dropout_rate), ) d_model=output_size, dropout_rate=positional_dropout_rate), )
self.normalize_before = normalize_before self.normalize_before = normalize_before
self.after_norm = nn.LayerNorm(output_size, epsilon=1e-12) self.after_norm = LayerNorm(output_size, epsilon=1e-12)
self.static_chunk_size = static_chunk_size self.static_chunk_size = static_chunk_size
self.use_dynamic_chunk = use_dynamic_chunk self.use_dynamic_chunk = use_dynamic_chunk
self.use_dynamic_left_chunk = use_dynamic_left_chunk self.use_dynamic_left_chunk = use_dynamic_left_chunk
@ -457,6 +458,7 @@ class ConformerEncoder(BaseEncoder):
cnn_module_norm (str): cnn conv norm type, Optional['batch_norm','layer_norm'] cnn_module_norm (str): cnn conv norm type, Optional['batch_norm','layer_norm']
""" """
assert check_argument_types() assert check_argument_types()
super().__init__(input_size, output_size, attention_heads, linear_units, super().__init__(input_size, output_size, attention_heads, linear_units,
num_blocks, dropout_rate, positional_dropout_rate, num_blocks, dropout_rate, positional_dropout_rate,
attention_dropout_rate, input_layer, attention_dropout_rate, input_layer,

@ -20,6 +20,8 @@ from typing import Tuple
import paddle import paddle
from paddle import nn from paddle import nn
from paddlespeech.s2t.modules.align import LayerNorm
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.utils.log import Log from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog() logger = Log(__name__).getlog()
@ -59,15 +61,15 @@ class TransformerEncoderLayer(nn.Layer):
super().__init__() super().__init__()
self.self_attn = self_attn self.self_attn = self_attn
self.feed_forward = feed_forward self.feed_forward = feed_forward
self.norm1 = nn.LayerNorm(size, epsilon=1e-12) self.norm1 = LayerNorm(size, epsilon=1e-12)
self.norm2 = nn.LayerNorm(size, epsilon=1e-12) self.norm2 = LayerNorm(size, epsilon=1e-12)
self.dropout = nn.Dropout(dropout_rate) self.dropout = nn.Dropout(dropout_rate)
self.size = size self.size = size
self.normalize_before = normalize_before self.normalize_before = normalize_before
self.concat_after = concat_after self.concat_after = concat_after
# concat_linear may be not used in forward fuction, # concat_linear may be not used in forward fuction,
# but will be saved in the *.pt # but will be saved in the *.pt
self.concat_linear = nn.Linear(size + size, size) self.concat_linear = Linear(size + size, size)
def forward( def forward(
self, self,
@ -174,23 +176,23 @@ class ConformerEncoderLayer(nn.Layer):
self.feed_forward = feed_forward self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron self.feed_forward_macaron = feed_forward_macaron
self.conv_module = conv_module self.conv_module = conv_module
self.norm_ff = nn.LayerNorm(size, epsilon=1e-12) # for the FNN module self.norm_ff = LayerNorm(size, epsilon=1e-12) # for the FNN module
self.norm_mha = nn.LayerNorm(size, epsilon=1e-12) # for the MHA module self.norm_mha = LayerNorm(size, epsilon=1e-12) # for the MHA module
if feed_forward_macaron is not None: if feed_forward_macaron is not None:
self.norm_ff_macaron = nn.LayerNorm(size, epsilon=1e-12) self.norm_ff_macaron = LayerNorm(size, epsilon=1e-12)
self.ff_scale = 0.5 self.ff_scale = 0.5
else: else:
self.ff_scale = 1.0 self.ff_scale = 1.0
if self.conv_module is not None: if self.conv_module is not None:
self.norm_conv = nn.LayerNorm( self.norm_conv = LayerNorm(
size, epsilon=1e-12) # for the CNN module size, epsilon=1e-12) # for the CNN module
self.norm_final = nn.LayerNorm( self.norm_final = LayerNorm(
size, epsilon=1e-12) # for the final output of the block size, epsilon=1e-12) # for the final output of the block
self.dropout = nn.Dropout(dropout_rate) self.dropout = nn.Dropout(dropout_rate)
self.size = size self.size = size
self.normalize_before = normalize_before self.normalize_before = normalize_before
self.concat_after = concat_after self.concat_after = concat_after
self.concat_linear = nn.Linear(size + size, size) self.concat_linear = Linear(size + size, size)
def forward( def forward(
self, self,

@ -0,0 +1,172 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from paddle.fluid import framework
from paddle.fluid import unique_name
from paddle.fluid.core import VarDesc
from paddle.fluid.initializer import MSRAInitializer
__all__ = ['KaimingUniform']
class KaimingUniform(MSRAInitializer):
r"""Implements the Kaiming Uniform initializer
This class implements the weight initialization from the paper
`Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
robust initialization method that particularly considers the rectifier
nonlinearities.
In case of Uniform distribution, the range is [-x, x], where
.. math::
x = \sqrt{\frac{1.0}{fan\_in}}
In case of Normal distribution, the mean is 0 and the standard deviation
is
.. math::
\sqrt{\\frac{2.0}{fan\_in}}
Args:
fan_in (float32|None): fan_in for Kaiming uniform Initializer. If None, it is\
inferred from the variable. default is None.
Note:
It is recommended to set fan_in to None for most cases.
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
linear = nn.Linear(2,
4,
weight_attr=nn.initializer.KaimingUniform())
data = paddle.rand([30, 10, 2], dtype='float32')
res = linear(data)
"""
def __init__(self, fan_in=None):
super(KaimingUniform, self).__init__(
uniform=True, fan_in=fan_in, seed=0)
def __call__(self, var, block=None):
"""Initialize the input tensor with MSRA initialization.
Args:
var(Tensor): Tensor that needs to be initialized.
block(Block, optional): The block in which initialization ops
should be added. Used in static graph only, default None.
Returns:
The initialization op
"""
block = self._check_block(block)
assert isinstance(var, framework.Variable)
assert isinstance(block, framework.Block)
f_in, f_out = self._compute_fans(var)
# If fan_in is passed, use it
fan_in = f_in if self._fan_in is None else self._fan_in
if self._seed == 0:
self._seed = block.program.random_seed
# to be compatible of fp16 initalizers
if var.dtype == VarDesc.VarType.FP16 or (
var.dtype == VarDesc.VarType.BF16 and not self._uniform):
out_dtype = VarDesc.VarType.FP32
out_var = block.create_var(
name=unique_name.generate(
".".join(['masra_init', var.name, 'tmp'])),
shape=var.shape,
dtype=out_dtype,
type=VarDesc.VarType.LOD_TENSOR,
persistable=False)
else:
out_dtype = var.dtype
out_var = var
if self._uniform:
limit = np.sqrt(1.0 / float(fan_in))
op = block.append_op(
type="uniform_random",
inputs={},
outputs={"Out": out_var},
attrs={
"shape": out_var.shape,
"dtype": int(out_dtype),
"min": -limit,
"max": limit,
"seed": self._seed
},
stop_gradient=True)
else:
std = np.sqrt(2.0 / float(fan_in))
op = block.append_op(
type="gaussian_random",
outputs={"Out": out_var},
attrs={
"shape": out_var.shape,
"dtype": int(out_dtype),
"mean": 0.0,
"std": std,
"seed": self._seed
},
stop_gradient=True)
if var.dtype == VarDesc.VarType.FP16 or (
var.dtype == VarDesc.VarType.BF16 and not self._uniform):
block.append_op(
type="cast",
inputs={"X": out_var},
outputs={"Out": var},
attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype})
if not framework.in_dygraph_mode():
var.op = op
return op
class DefaultInitializerContext(object):
"""
egs:
with DefaultInitializerContext("kaiming_uniform"):
code for setup_model
"""
def __init__(self, init_type=None):
self.init_type = init_type
def __enter__(self):
if self.init_type is None:
return
else:
from paddlespeech.s2t.modules import align
align.global_init_type = self.init_type
return
def __exit__(self, exc_type, exc_val, exc_tb):
from paddlespeech.s2t.modules import align
align.global_init_type = None

@ -17,6 +17,7 @@
import paddle import paddle
from paddle import nn from paddle import nn
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.utils.log import Log from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog() logger = Log(__name__).getlog()
@ -44,10 +45,10 @@ class PositionwiseFeedForward(nn.Layer):
activation (paddle.nn.Layer): Activation function activation (paddle.nn.Layer): Activation function
""" """
super().__init__() super().__init__()
self.w_1 = nn.Linear(idim, hidden_units) self.w_1 = Linear(idim, hidden_units)
self.activation = activation self.activation = activation
self.dropout = nn.Dropout(dropout_rate) self.dropout = nn.Dropout(dropout_rate)
self.w_2 = nn.Linear(hidden_units, idim) self.w_2 = Linear(hidden_units, idim)
def forward(self, xs: paddle.Tensor) -> paddle.Tensor: def forward(self, xs: paddle.Tensor) -> paddle.Tensor:
"""Forward function. """Forward function.

@ -19,6 +19,9 @@ from typing import Tuple
import paddle import paddle
from paddle import nn from paddle import nn
from paddlespeech.s2t.modules.align import Conv2D
from paddlespeech.s2t.modules.align import LayerNorm
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.modules.embedding import PositionalEncoding from paddlespeech.s2t.modules.embedding import PositionalEncoding
from paddlespeech.s2t.utils.log import Log from paddlespeech.s2t.utils.log import Log
@ -60,8 +63,8 @@ class LinearNoSubsampling(BaseSubsampling):
""" """
super().__init__(pos_enc_class) super().__init__(pos_enc_class)
self.out = nn.Sequential( self.out = nn.Sequential(
nn.Linear(idim, odim), Linear(idim, odim),
nn.LayerNorm(odim, epsilon=1e-12), LayerNorm(odim, epsilon=1e-12),
nn.Dropout(dropout_rate), nn.Dropout(dropout_rate),
nn.ReLU(), ) nn.ReLU(), )
self.right_context = 0 self.right_context = 0
@ -108,12 +111,12 @@ class Conv2dSubsampling4(Conv2dSubsampling):
""" """
super().__init__(pos_enc_class) super().__init__(pos_enc_class)
self.conv = nn.Sequential( self.conv = nn.Sequential(
nn.Conv2D(1, odim, 3, 2), Conv2D(1, odim, 3, 2),
nn.ReLU(), nn.ReLU(),
nn.Conv2D(odim, odim, 3, 2), Conv2D(odim, odim, 3, 2),
nn.ReLU(), ) nn.ReLU(), )
self.out = nn.Sequential( self.out = nn.Sequential(
nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim)) Linear(odim * (((idim - 1) // 2 - 1) // 2), odim))
self.subsampling_rate = 4 self.subsampling_rate = 4
# The right context for every conv layer is computed by: # The right context for every conv layer is computed by:
# (kernel_size - 1) * frame_rate_of_this_layer # (kernel_size - 1) * frame_rate_of_this_layer
@ -160,13 +163,13 @@ class Conv2dSubsampling6(Conv2dSubsampling):
""" """
super().__init__(pos_enc_class) super().__init__(pos_enc_class)
self.conv = nn.Sequential( self.conv = nn.Sequential(
nn.Conv2D(1, odim, 3, 2), Conv2D(1, odim, 3, 2),
nn.ReLU(), nn.ReLU(),
nn.Conv2D(odim, odim, 5, 3), Conv2D(odim, odim, 5, 3),
nn.ReLU(), ) nn.ReLU(), )
# O = (I - F + Pstart + Pend) // S + 1 # O = (I - F + Pstart + Pend) // S + 1
# when Padding == 0, O = (I - F - S) // S # when Padding == 0, O = (I - F - S) // S
self.linear = nn.Linear(odim * (((idim - 1) // 2 - 2) // 3), odim) self.linear = Linear(odim * (((idim - 1) // 2 - 2) // 3), odim)
# The right context for every conv layer is computed by: # The right context for every conv layer is computed by:
# (kernel_size - 1) * frame_rate_of_this_layer # (kernel_size - 1) * frame_rate_of_this_layer
# 10 = (3 - 1) * 1 + (5 - 1) * 2 # 10 = (3 - 1) * 1 + (5 - 1) * 2
@ -212,13 +215,13 @@ class Conv2dSubsampling8(Conv2dSubsampling):
""" """
super().__init__(pos_enc_class) super().__init__(pos_enc_class)
self.conv = nn.Sequential( self.conv = nn.Sequential(
nn.Conv2D(1, odim, 3, 2), Conv2D(1, odim, 3, 2),
nn.ReLU(), nn.ReLU(),
nn.Conv2D(odim, odim, 3, 2), Conv2D(odim, odim, 3, 2),
nn.ReLU(), nn.ReLU(),
nn.Conv2D(odim, odim, 3, 2), Conv2D(odim, odim, 3, 2),
nn.ReLU(), ) nn.ReLU(), )
self.linear = nn.Linear(odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), self.linear = Linear(odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2),
odim) odim)
self.subsampling_rate = 8 self.subsampling_rate = 8
# The right context for every conv layer is computed by: # The right context for every conv layer is computed by:

Loading…
Cancel
Save