commit
f9a6970a62
@ -0,0 +1,181 @@
|
||||
import paddle
|
||||
import math
|
||||
import numpy as np
|
||||
from paddle.io import BatchSampler
|
||||
|
||||
class ErnieSATSampler(BatchSampler):
|
||||
"""Sampler that restricts data loading to a subset of the dataset.
|
||||
In such case, each process can pass a DistributedBatchSampler instance
|
||||
as a DataLoader sampler, and load a subset of the original dataset that
|
||||
is exclusive to it.
|
||||
.. note::
|
||||
Dataset is assumed to be of constant size.
|
||||
|
||||
Args:
|
||||
dataset(paddle.io.Dataset): this could be a `paddle.io.Dataset` implement
|
||||
or other python object which implemented
|
||||
`__len__` for BatchSampler to get sample
|
||||
number of data source.
|
||||
batch_size(int): sample indice number in a mini-batch indices.
|
||||
num_replicas(int, optional): porcess number in distributed training.
|
||||
If :attr:`num_replicas` is None, :attr:`num_replicas` will be
|
||||
retrieved from :code:`paddle.distributed.ParallenEnv`.
|
||||
Default None.
|
||||
rank(int, optional): the rank of the current process among :attr:`num_replicas`
|
||||
processes. If :attr:`rank` is None, :attr:`rank` is retrieved from
|
||||
:code:`paddle.distributed.ParallenEnv`. Default None.
|
||||
shuffle(bool): whther to shuffle indices order before genrating
|
||||
batch indices. Default False.
|
||||
drop_last(bool): whether drop the last incomplete batch dataset size
|
||||
is not divisible by the batch size. Default False
|
||||
Examples:
|
||||
.. code-block:: python
|
||||
import numpy as np
|
||||
from paddle.io import Dataset, DistributedBatchSampler
|
||||
# init with dataset
|
||||
class RandomDataset(Dataset):
|
||||
def __init__(self, num_samples):
|
||||
self.num_samples = num_samples
|
||||
|
||||
def __getitem__(self, idx):
|
||||
image = np.random.random([784]).astype('float32')
|
||||
label = np.random.randint(0, 9, (1, )).astype('int64')
|
||||
return image, label
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples
|
||||
|
||||
dataset = RandomDataset(100)
|
||||
sampler = DistributedBatchSampler(dataset, batch_size=64)
|
||||
for data in sampler:
|
||||
# do something
|
||||
break
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
dataset,
|
||||
batch_size,
|
||||
num_replicas=None,
|
||||
rank=None,
|
||||
shuffle=False,
|
||||
drop_last=False):
|
||||
self.dataset = dataset
|
||||
|
||||
assert isinstance(batch_size, int) and batch_size > 0, \
|
||||
"batch_size should be a positive integer"
|
||||
self.batch_size = batch_size
|
||||
assert isinstance(shuffle, bool), \
|
||||
"shuffle should be a boolean value"
|
||||
self.shuffle = shuffle
|
||||
assert isinstance(drop_last, bool), \
|
||||
"drop_last should be a boolean number"
|
||||
|
||||
from paddle.fluid.dygraph.parallel import ParallelEnv
|
||||
|
||||
if num_replicas is not None:
|
||||
assert isinstance(num_replicas, int) and num_replicas > 0, \
|
||||
"num_replicas should be a positive integer"
|
||||
self.nranks = num_replicas
|
||||
else:
|
||||
self.nranks = ParallelEnv().nranks
|
||||
|
||||
if rank is not None:
|
||||
assert isinstance(rank, int) and rank >= 0, \
|
||||
"rank should be a non-negative integer"
|
||||
self.local_rank = rank
|
||||
else:
|
||||
self.local_rank = ParallelEnv().local_rank
|
||||
|
||||
self.drop_last = drop_last
|
||||
self.epoch = 0
|
||||
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.nranks))
|
||||
self.total_size = self.num_samples * self.nranks
|
||||
|
||||
def __iter__(self):
|
||||
num_samples = len(self.dataset)
|
||||
indices = np.arange(num_samples).tolist()
|
||||
indices += indices[:(self.total_size - len(indices))]
|
||||
assert len(indices) == self.total_size
|
||||
|
||||
# subsample
|
||||
def _get_indices_by_batch_size(indices):
|
||||
subsampled_indices = []
|
||||
last_batch_size = self.total_size % (self.batch_size * self.nranks)
|
||||
assert last_batch_size % self.nranks == 0
|
||||
last_local_batch_size = last_batch_size // self.nranks
|
||||
|
||||
for i in range(self.local_rank * self.batch_size,
|
||||
len(indices) - last_batch_size,
|
||||
self.batch_size * self.nranks):
|
||||
subsampled_indices.extend(indices[i:i + self.batch_size])
|
||||
|
||||
indices = indices[len(indices) - last_batch_size:]
|
||||
subsampled_indices.extend(indices[
|
||||
self.local_rank * last_local_batch_size:(
|
||||
self.local_rank + 1) * last_local_batch_size])
|
||||
return subsampled_indices
|
||||
|
||||
if self.nranks > 1:
|
||||
indices = _get_indices_by_batch_size(indices)
|
||||
|
||||
assert len(indices) == self.num_samples
|
||||
_sample_iter = iter(indices)
|
||||
|
||||
batch_indices_list = []
|
||||
batch_indices = []
|
||||
for idx in _sample_iter:
|
||||
batch_indices.append(idx)
|
||||
if len(batch_indices) == self.batch_size:
|
||||
batch_indices_list.append(batch_indices)
|
||||
batch_indices = []
|
||||
if not self.drop_last and len(batch_indices) > 0:
|
||||
batch_indices_list.append(batch_indices)
|
||||
|
||||
if self.shuffle:
|
||||
np.random.RandomState(self.epoch).shuffle(batch_indices_list)
|
||||
self.epoch += 1
|
||||
|
||||
for batch_indices in batch_indices_list:
|
||||
yield batch_indices
|
||||
|
||||
def __len__(self):
|
||||
num_samples = self.num_samples
|
||||
num_samples += int(not self.drop_last) * (self.batch_size - 1)
|
||||
return num_samples // self.batch_size
|
||||
|
||||
def set_epoch(self, epoch):
|
||||
"""
|
||||
Sets the epoch number. When :attr:`shuffle=True`, this number is used
|
||||
as seeds of random numbers. By default, users may not set this, all
|
||||
replicas (workers) use a different random ordering for each epoch.
|
||||
If set same number at each epoch, this sampler will yield the same
|
||||
ordering at all epoches.
|
||||
Arguments:
|
||||
epoch (int): Epoch number.
|
||||
Examples:
|
||||
.. code-block:: python
|
||||
|
||||
import numpy as np
|
||||
|
||||
from paddle.io import Dataset, DistributedBatchSampler
|
||||
|
||||
# init with dataset
|
||||
class RandomDataset(Dataset):
|
||||
def __init__(self, num_samples):
|
||||
self.num_samples = num_samples
|
||||
|
||||
def __getitem__(self, idx):
|
||||
image = np.random.random([784]).astype('float32')
|
||||
label = np.random.randint(0, 9, (1, )).astype('int64')
|
||||
return image, label
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples
|
||||
|
||||
dataset = RandomDataset(100)
|
||||
sampler = DistributedBatchSampler(dataset, batch_size=64)
|
||||
|
||||
for epoch in range(10):
|
||||
sampler.set_epoch(epoch)
|
||||
"""
|
||||
self.epoch = epoch
|
Loading…
Reference in new issue