Merge pull request #1178 from KPatr1ck/doc
[DOC]Add cls docs of training and custom dataset.pull/1179/head
commit
f5d038e7ab
@ -0,0 +1,117 @@
|
||||
# Customize Dataset for Audio Classification
|
||||
|
||||
Following this tutorial you can customize your dataset for audio classification task by using `paddlespeech` and `paddleaudio`.
|
||||
|
||||
A base class of classification dataset is `paddleaudio.dataset.AudioClassificationDataset`. To customize your dataset you should write a dataset class derived from `AudioClassificationDataset`.
|
||||
|
||||
Assuming you have some wave files that stored in your own directory. You should prepare a meta file with the information of filepaths and labels. For example the absolute path of it is `/PATH/TO/META_FILE.txt`:
|
||||
```
|
||||
/PATH/TO/WAVE_FILE/1.wav cat
|
||||
/PATH/TO/WAVE_FILE/2.wav cat
|
||||
/PATH/TO/WAVE_FILE/3.wav dog
|
||||
/PATH/TO/WAVE_FILE/4.wav dog
|
||||
```
|
||||
Here is an example to build your custom dataset in `custom_dataset.py`:
|
||||
|
||||
```python
|
||||
from paddleaudio.datasets.dataset import AudioClassificationDataset
|
||||
|
||||
class CustomDataset(AudioClassificationDataset):
|
||||
# All *.wav file with same sample rate 16k/24k/32k/44k.
|
||||
sample_rate = 16000
|
||||
meta_file = '/PATH/TO/META_FILE.txt'
|
||||
# List all the class labels
|
||||
label_list = [
|
||||
'cat',
|
||||
'dog',
|
||||
]
|
||||
|
||||
def __init__(self):
|
||||
files, labels = self._get_data()
|
||||
super(CustomDataset, self).__init__(
|
||||
files=files, labels=labels, feat_type='raw')
|
||||
|
||||
def _get_data(self):
|
||||
'''
|
||||
This method offer information of wave files and labels.
|
||||
'''
|
||||
files = []
|
||||
labels = []
|
||||
|
||||
with open(self.meta_file) as f:
|
||||
for line in f:
|
||||
file, label_str = line.strip().split(' ')
|
||||
files.append(file)
|
||||
labels.append(self.label_list.index(label_str))
|
||||
|
||||
return files, labels
|
||||
```
|
||||
|
||||
Then you can build dataset and data loader from `CustomDataset`:
|
||||
```python
|
||||
import paddle
|
||||
from paddleaudio.features import LogMelSpectrogram
|
||||
|
||||
from custom_dataset import CustomDataset
|
||||
|
||||
train_ds = CustomDataset()
|
||||
feature_extractor = LogMelSpectrogram(sr=train_ds.sample_rate)
|
||||
|
||||
train_sampler = paddle.io.DistributedBatchSampler(
|
||||
train_ds, batch_size=4, shuffle=True, drop_last=False)
|
||||
train_loader = paddle.io.DataLoader(
|
||||
train_ds,
|
||||
batch_sampler=train_sampler,
|
||||
return_list=True,
|
||||
use_buffer_reader=True)
|
||||
```
|
||||
|
||||
Train model with `CustomDataset`:
|
||||
```python
|
||||
from paddlespeech.cls.models import cnn14
|
||||
from paddlespeech.cls.models import SoundClassifier
|
||||
|
||||
backbone = cnn14(pretrained=True, extract_embedding=True)
|
||||
model = SoundClassifier(backbone, num_class=len(train_ds.label_list))
|
||||
optimizer = paddle.optimizer.Adam(
|
||||
learning_rate=1e-6, parameters=model.parameters())
|
||||
criterion = paddle.nn.loss.CrossEntropyLoss()
|
||||
|
||||
steps_per_epoch = len(train_sampler)
|
||||
epochs = 10
|
||||
for epoch in range(1, epochs + 1):
|
||||
model.train()
|
||||
|
||||
for batch_idx, batch in enumerate(train_loader):
|
||||
waveforms, labels = batch
|
||||
# Need a padding when lengths of waveforms differ in a batch.
|
||||
feats = feature_extractor(waveforms)
|
||||
feats = paddle.transpose(feats, [0, 2, 1])
|
||||
logits = model(feats)
|
||||
loss = criterion(logits, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if isinstance(optimizer._learning_rate,
|
||||
paddle.optimizer.lr.LRScheduler):
|
||||
optimizer._learning_rate.step()
|
||||
optimizer.clear_grad()
|
||||
|
||||
# Calculate loss
|
||||
avg_loss = loss.numpy()[0]
|
||||
|
||||
# Calculate metrics
|
||||
preds = paddle.argmax(logits, axis=1)
|
||||
num_corrects = (preds == labels).numpy().sum()
|
||||
num_samples = feats.shape[0]
|
||||
|
||||
avg_acc = num_corrects / num_samples
|
||||
|
||||
print_msg = 'Epoch={}/{}, Step={}/{}'.format(
|
||||
epoch, epochs, batch_idx + 1, steps_per_epoch)
|
||||
print_msg += ' loss={:.4f}'.format(avg_loss)
|
||||
print_msg += ' acc={:.4f}'.format(avg_acc)
|
||||
print_msg += ' lr={:.6f}'.format(optimizer.get_lr())
|
||||
print(print_msg)
|
||||
```
|
||||
|
||||
If you want to save the checkpoint of model and evaluate from a specific dataset, please see `paddlespeech/cli/exp/panns/train.py` for more details.
|
@ -0,0 +1,51 @@
|
||||
# Quick Start of Audio Classification
|
||||
Several shell scripts provided in `./examples/esc50/cls0` will help us to quickly give it a try, for most major modules, including data preparation, model training, model evaluation, with [ESC50](ttps://github.com/karolpiczak/ESC-50) dataset.
|
||||
|
||||
Some of the scripts in `./examples` are not configured with GPUs. If you want to train with 8 GPUs, please modify `CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7`. If you don't have any GPU available, please set `CUDA_VISIBLE_DEVICES=` to use CPUs instead.
|
||||
|
||||
Let's start a audio classification task with the following steps:
|
||||
|
||||
- Go to the directory
|
||||
|
||||
```bash
|
||||
cd examples/esc50/cls0
|
||||
```
|
||||
|
||||
- Source env
|
||||
```bash
|
||||
source path.sh
|
||||
```
|
||||
|
||||
- Main entry point
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 ./run.sh 1
|
||||
```
|
||||
|
||||
This demo includes fine-tuning, evaluating and deploying a audio classificatio model. More detailed information is provided in the following sections.
|
||||
|
||||
## Fine-tuning a model
|
||||
PANNs([PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition](https://arxiv.org/pdf/1912.10211.pdf)) are pretrained models with [Audioset](https://research.google.com/audioset/). They can be easily used to extract audio embeddings for audio classification task.
|
||||
|
||||
To start a model fine-tuning, please run:
|
||||
```bash
|
||||
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||
feat_backend=numpy
|
||||
./local/train.sh ${ngpu} ${feat_backend}
|
||||
```
|
||||
|
||||
## Deploy a model
|
||||
Once you save a model checkpoint, you can export it to static graph and deploy by python scirpt:
|
||||
|
||||
- Export to a static graph
|
||||
```bash
|
||||
./local/export.sh ${ckpt_dir} ./export
|
||||
```
|
||||
The argument `ckpt_dir` should be a directory in which a model checkpoint stored, for example `checkpoint/epoch_50`.
|
||||
|
||||
The static graph will be exported to `./export`.
|
||||
|
||||
- Inference
|
||||
```bash
|
||||
./local/static_model_infer.sh ${infer_device} ./export ${audio_file}
|
||||
```
|
||||
The argument `infer_device` can be `cpu` or `gpu`, and it means which device to be used to infer. And `audio_file` should be a wave file with name `*.wav`.
|
Loading…
Reference in new issue