commit
f4e9a9224e
@ -0,0 +1,204 @@
|
|||||||
|
#include "ctc_beam_search_decoder.h"
|
||||||
|
|
||||||
|
#include <algorithm>
|
||||||
|
#include <cmath>
|
||||||
|
#include <iostream>
|
||||||
|
#include <limits>
|
||||||
|
#include <map>
|
||||||
|
#include <utility>
|
||||||
|
|
||||||
|
#include "ThreadPool.h"
|
||||||
|
#include "fst/fstlib.h"
|
||||||
|
|
||||||
|
#include "decoder_utils.h"
|
||||||
|
#include "path_trie.h"
|
||||||
|
|
||||||
|
using FSTMATCH = fst::SortedMatcher<fst::StdVectorFst>;
|
||||||
|
|
||||||
|
std::vector<std::pair<double, std::string>> ctc_beam_search_decoder(
|
||||||
|
const std::vector<std::vector<double>> &probs_seq,
|
||||||
|
const std::vector<std::string> &vocabulary,
|
||||||
|
size_t beam_size,
|
||||||
|
double cutoff_prob,
|
||||||
|
size_t cutoff_top_n,
|
||||||
|
Scorer *ext_scorer) {
|
||||||
|
// dimension check
|
||||||
|
size_t num_time_steps = probs_seq.size();
|
||||||
|
for (size_t i = 0; i < num_time_steps; ++i) {
|
||||||
|
VALID_CHECK_EQ(probs_seq[i].size(),
|
||||||
|
vocabulary.size() + 1,
|
||||||
|
"The shape of probs_seq does not match with "
|
||||||
|
"the shape of the vocabulary");
|
||||||
|
}
|
||||||
|
|
||||||
|
// assign blank id
|
||||||
|
size_t blank_id = vocabulary.size();
|
||||||
|
|
||||||
|
// assign space id
|
||||||
|
auto it = std::find(vocabulary.begin(), vocabulary.end(), " ");
|
||||||
|
int space_id = it - vocabulary.begin();
|
||||||
|
// if no space in vocabulary
|
||||||
|
if ((size_t)space_id >= vocabulary.size()) {
|
||||||
|
space_id = -2;
|
||||||
|
}
|
||||||
|
|
||||||
|
// init prefixes' root
|
||||||
|
PathTrie root;
|
||||||
|
root.score = root.log_prob_b_prev = 0.0;
|
||||||
|
std::vector<PathTrie *> prefixes;
|
||||||
|
prefixes.push_back(&root);
|
||||||
|
|
||||||
|
if (ext_scorer != nullptr && !ext_scorer->is_character_based()) {
|
||||||
|
auto fst_dict = static_cast<fst::StdVectorFst *>(ext_scorer->dictionary);
|
||||||
|
fst::StdVectorFst *dict_ptr = fst_dict->Copy(true);
|
||||||
|
root.set_dictionary(dict_ptr);
|
||||||
|
auto matcher = std::make_shared<FSTMATCH>(*dict_ptr, fst::MATCH_INPUT);
|
||||||
|
root.set_matcher(matcher);
|
||||||
|
}
|
||||||
|
|
||||||
|
// prefix search over time
|
||||||
|
for (size_t time_step = 0; time_step < num_time_steps; ++time_step) {
|
||||||
|
auto &prob = probs_seq[time_step];
|
||||||
|
|
||||||
|
float min_cutoff = -NUM_FLT_INF;
|
||||||
|
bool full_beam = false;
|
||||||
|
if (ext_scorer != nullptr) {
|
||||||
|
size_t num_prefixes = std::min(prefixes.size(), beam_size);
|
||||||
|
std::sort(
|
||||||
|
prefixes.begin(), prefixes.begin() + num_prefixes, prefix_compare);
|
||||||
|
min_cutoff = prefixes[num_prefixes - 1]->score +
|
||||||
|
std::log(prob[blank_id]) - std::max(0.0, ext_scorer->beta);
|
||||||
|
full_beam = (num_prefixes == beam_size);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::pair<size_t, float>> log_prob_idx =
|
||||||
|
get_pruned_log_probs(prob, cutoff_prob, cutoff_top_n);
|
||||||
|
// loop over chars
|
||||||
|
for (size_t index = 0; index < log_prob_idx.size(); index++) {
|
||||||
|
auto c = log_prob_idx[index].first;
|
||||||
|
auto log_prob_c = log_prob_idx[index].second;
|
||||||
|
|
||||||
|
for (size_t i = 0; i < prefixes.size() && i < beam_size; ++i) {
|
||||||
|
auto prefix = prefixes[i];
|
||||||
|
if (full_beam && log_prob_c + prefix->score < min_cutoff) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
// blank
|
||||||
|
if (c == blank_id) {
|
||||||
|
prefix->log_prob_b_cur =
|
||||||
|
log_sum_exp(prefix->log_prob_b_cur, log_prob_c + prefix->score);
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
// repeated character
|
||||||
|
if (c == prefix->character) {
|
||||||
|
prefix->log_prob_nb_cur = log_sum_exp(
|
||||||
|
prefix->log_prob_nb_cur, log_prob_c + prefix->log_prob_nb_prev);
|
||||||
|
}
|
||||||
|
// get new prefix
|
||||||
|
auto prefix_new = prefix->get_path_trie(c);
|
||||||
|
|
||||||
|
if (prefix_new != nullptr) {
|
||||||
|
float log_p = -NUM_FLT_INF;
|
||||||
|
|
||||||
|
if (c == prefix->character &&
|
||||||
|
prefix->log_prob_b_prev > -NUM_FLT_INF) {
|
||||||
|
log_p = log_prob_c + prefix->log_prob_b_prev;
|
||||||
|
} else if (c != prefix->character) {
|
||||||
|
log_p = log_prob_c + prefix->score;
|
||||||
|
}
|
||||||
|
|
||||||
|
// language model scoring
|
||||||
|
if (ext_scorer != nullptr &&
|
||||||
|
(c == space_id || ext_scorer->is_character_based())) {
|
||||||
|
PathTrie *prefix_toscore = nullptr;
|
||||||
|
// skip scoring the space
|
||||||
|
if (ext_scorer->is_character_based()) {
|
||||||
|
prefix_toscore = prefix_new;
|
||||||
|
} else {
|
||||||
|
prefix_toscore = prefix;
|
||||||
|
}
|
||||||
|
|
||||||
|
double score = 0.0;
|
||||||
|
std::vector<std::string> ngram;
|
||||||
|
ngram = ext_scorer->make_ngram(prefix_toscore);
|
||||||
|
score = ext_scorer->get_log_cond_prob(ngram) * ext_scorer->alpha;
|
||||||
|
log_p += score;
|
||||||
|
log_p += ext_scorer->beta;
|
||||||
|
}
|
||||||
|
prefix_new->log_prob_nb_cur =
|
||||||
|
log_sum_exp(prefix_new->log_prob_nb_cur, log_p);
|
||||||
|
}
|
||||||
|
} // end of loop over prefix
|
||||||
|
} // end of loop over vocabulary
|
||||||
|
|
||||||
|
prefixes.clear();
|
||||||
|
// update log probs
|
||||||
|
root.iterate_to_vec(prefixes);
|
||||||
|
|
||||||
|
// only preserve top beam_size prefixes
|
||||||
|
if (prefixes.size() >= beam_size) {
|
||||||
|
std::nth_element(prefixes.begin(),
|
||||||
|
prefixes.begin() + beam_size,
|
||||||
|
prefixes.end(),
|
||||||
|
prefix_compare);
|
||||||
|
for (size_t i = beam_size; i < prefixes.size(); ++i) {
|
||||||
|
prefixes[i]->remove();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // end of loop over time
|
||||||
|
|
||||||
|
// compute aproximate ctc score as the return score, without affecting the
|
||||||
|
// return order of decoding result. To delete when decoder gets stable.
|
||||||
|
for (size_t i = 0; i < beam_size && i < prefixes.size(); ++i) {
|
||||||
|
double approx_ctc = prefixes[i]->score;
|
||||||
|
if (ext_scorer != nullptr) {
|
||||||
|
std::vector<int> output;
|
||||||
|
prefixes[i]->get_path_vec(output);
|
||||||
|
auto prefix_length = output.size();
|
||||||
|
auto words = ext_scorer->split_labels(output);
|
||||||
|
// remove word insert
|
||||||
|
approx_ctc = approx_ctc - prefix_length * ext_scorer->beta;
|
||||||
|
// remove language model weight:
|
||||||
|
approx_ctc -= (ext_scorer->get_sent_log_prob(words)) * ext_scorer->alpha;
|
||||||
|
}
|
||||||
|
prefixes[i]->approx_ctc = approx_ctc;
|
||||||
|
}
|
||||||
|
|
||||||
|
return get_beam_search_result(prefixes, vocabulary, beam_size);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
std::vector<std::vector<std::pair<double, std::string>>>
|
||||||
|
ctc_beam_search_decoder_batch(
|
||||||
|
const std::vector<std::vector<std::vector<double>>> &probs_split,
|
||||||
|
const std::vector<std::string> &vocabulary,
|
||||||
|
size_t beam_size,
|
||||||
|
size_t num_processes,
|
||||||
|
double cutoff_prob,
|
||||||
|
size_t cutoff_top_n,
|
||||||
|
Scorer *ext_scorer) {
|
||||||
|
VALID_CHECK_GT(num_processes, 0, "num_processes must be nonnegative!");
|
||||||
|
// thread pool
|
||||||
|
ThreadPool pool(num_processes);
|
||||||
|
// number of samples
|
||||||
|
size_t batch_size = probs_split.size();
|
||||||
|
|
||||||
|
// enqueue the tasks of decoding
|
||||||
|
std::vector<std::future<std::vector<std::pair<double, std::string>>>> res;
|
||||||
|
for (size_t i = 0; i < batch_size; ++i) {
|
||||||
|
res.emplace_back(pool.enqueue(ctc_beam_search_decoder,
|
||||||
|
probs_split[i],
|
||||||
|
vocabulary,
|
||||||
|
beam_size,
|
||||||
|
cutoff_prob,
|
||||||
|
cutoff_top_n,
|
||||||
|
ext_scorer));
|
||||||
|
}
|
||||||
|
|
||||||
|
// get decoding results
|
||||||
|
std::vector<std::vector<std::pair<double, std::string>>> batch_results;
|
||||||
|
for (size_t i = 0; i < batch_size; ++i) {
|
||||||
|
batch_results.emplace_back(res[i].get());
|
||||||
|
}
|
||||||
|
return batch_results;
|
||||||
|
}
|
@ -0,0 +1,61 @@
|
|||||||
|
#ifndef CTC_BEAM_SEARCH_DECODER_H_
|
||||||
|
#define CTC_BEAM_SEARCH_DECODER_H_
|
||||||
|
|
||||||
|
#include <string>
|
||||||
|
#include <utility>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include "scorer.h"
|
||||||
|
|
||||||
|
/* CTC Beam Search Decoder
|
||||||
|
|
||||||
|
* Parameters:
|
||||||
|
* probs_seq: 2-D vector that each element is a vector of probabilities
|
||||||
|
* over vocabulary of one time step.
|
||||||
|
* vocabulary: A vector of vocabulary.
|
||||||
|
* beam_size: The width of beam search.
|
||||||
|
* cutoff_prob: Cutoff probability for pruning.
|
||||||
|
* cutoff_top_n: Cutoff number for pruning.
|
||||||
|
* ext_scorer: External scorer to evaluate a prefix, which consists of
|
||||||
|
* n-gram language model scoring and word insertion term.
|
||||||
|
* Default null, decoding the input sample without scorer.
|
||||||
|
* Return:
|
||||||
|
* A vector that each element is a pair of score and decoding result,
|
||||||
|
* in desending order.
|
||||||
|
*/
|
||||||
|
std::vector<std::pair<double, std::string>> ctc_beam_search_decoder(
|
||||||
|
const std::vector<std::vector<double>> &probs_seq,
|
||||||
|
const std::vector<std::string> &vocabulary,
|
||||||
|
size_t beam_size,
|
||||||
|
double cutoff_prob = 1.0,
|
||||||
|
size_t cutoff_top_n = 40,
|
||||||
|
Scorer *ext_scorer = nullptr);
|
||||||
|
|
||||||
|
/* CTC Beam Search Decoder for batch data
|
||||||
|
|
||||||
|
* Parameters:
|
||||||
|
* probs_seq: 3-D vector that each element is a 2-D vector that can be used
|
||||||
|
* by ctc_beam_search_decoder().
|
||||||
|
* vocabulary: A vector of vocabulary.
|
||||||
|
* beam_size: The width of beam search.
|
||||||
|
* num_processes: Number of threads for beam search.
|
||||||
|
* cutoff_prob: Cutoff probability for pruning.
|
||||||
|
* cutoff_top_n: Cutoff number for pruning.
|
||||||
|
* ext_scorer: External scorer to evaluate a prefix, which consists of
|
||||||
|
* n-gram language model scoring and word insertion term.
|
||||||
|
* Default null, decoding the input sample without scorer.
|
||||||
|
* Return:
|
||||||
|
* A 2-D vector that each element is a vector of beam search decoding
|
||||||
|
* result for one audio sample.
|
||||||
|
*/
|
||||||
|
std::vector<std::vector<std::pair<double, std::string>>>
|
||||||
|
ctc_beam_search_decoder_batch(
|
||||||
|
const std::vector<std::vector<std::vector<double>>> &probs_split,
|
||||||
|
const std::vector<std::string> &vocabulary,
|
||||||
|
size_t beam_size,
|
||||||
|
size_t num_processes,
|
||||||
|
double cutoff_prob = 1.0,
|
||||||
|
size_t cutoff_top_n = 40,
|
||||||
|
Scorer *ext_scorer = nullptr);
|
||||||
|
|
||||||
|
#endif // CTC_BEAM_SEARCH_DECODER_H_
|
@ -0,0 +1,45 @@
|
|||||||
|
#include "ctc_greedy_decoder.h"
|
||||||
|
#include "decoder_utils.h"
|
||||||
|
|
||||||
|
std::string ctc_greedy_decoder(
|
||||||
|
const std::vector<std::vector<double>> &probs_seq,
|
||||||
|
const std::vector<std::string> &vocabulary) {
|
||||||
|
// dimension check
|
||||||
|
size_t num_time_steps = probs_seq.size();
|
||||||
|
for (size_t i = 0; i < num_time_steps; ++i) {
|
||||||
|
VALID_CHECK_EQ(probs_seq[i].size(),
|
||||||
|
vocabulary.size() + 1,
|
||||||
|
"The shape of probs_seq does not match with "
|
||||||
|
"the shape of the vocabulary");
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t blank_id = vocabulary.size();
|
||||||
|
|
||||||
|
std::vector<size_t> max_idx_vec(num_time_steps, 0);
|
||||||
|
std::vector<size_t> idx_vec;
|
||||||
|
for (size_t i = 0; i < num_time_steps; ++i) {
|
||||||
|
double max_prob = 0.0;
|
||||||
|
size_t max_idx = 0;
|
||||||
|
const std::vector<double> &probs_step = probs_seq[i];
|
||||||
|
for (size_t j = 0; j < probs_step.size(); ++j) {
|
||||||
|
if (max_prob < probs_step[j]) {
|
||||||
|
max_idx = j;
|
||||||
|
max_prob = probs_step[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// id with maximum probability in current time step
|
||||||
|
max_idx_vec[i] = max_idx;
|
||||||
|
// deduplicate
|
||||||
|
if ((i == 0) || ((i > 0) && max_idx_vec[i] != max_idx_vec[i - 1])) {
|
||||||
|
idx_vec.push_back(max_idx_vec[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string best_path_result;
|
||||||
|
for (size_t i = 0; i < idx_vec.size(); ++i) {
|
||||||
|
if (idx_vec[i] != blank_id) {
|
||||||
|
best_path_result += vocabulary[idx_vec[i]];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return best_path_result;
|
||||||
|
}
|
@ -0,0 +1,20 @@
|
|||||||
|
#ifndef CTC_GREEDY_DECODER_H
|
||||||
|
#define CTC_GREEDY_DECODER_H
|
||||||
|
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
/* CTC Greedy (Best Path) Decoder
|
||||||
|
*
|
||||||
|
* Parameters:
|
||||||
|
* probs_seq: 2-D vector that each element is a vector of probabilities
|
||||||
|
* over vocabulary of one time step.
|
||||||
|
* vocabulary: A vector of vocabulary.
|
||||||
|
* Return:
|
||||||
|
* The decoding result in string
|
||||||
|
*/
|
||||||
|
std::string ctc_greedy_decoder(
|
||||||
|
const std::vector<std::vector<double>>& probs_seq,
|
||||||
|
const std::vector<std::string>& vocabulary);
|
||||||
|
|
||||||
|
#endif // CTC_GREEDY_DECODER_H
|
@ -0,0 +1,176 @@
|
|||||||
|
#include "decoder_utils.h"
|
||||||
|
|
||||||
|
#include <algorithm>
|
||||||
|
#include <cmath>
|
||||||
|
#include <limits>
|
||||||
|
|
||||||
|
std::vector<std::pair<size_t, float>> get_pruned_log_probs(
|
||||||
|
const std::vector<double> &prob_step,
|
||||||
|
double cutoff_prob,
|
||||||
|
size_t cutoff_top_n) {
|
||||||
|
std::vector<std::pair<int, double>> prob_idx;
|
||||||
|
for (size_t i = 0; i < prob_step.size(); ++i) {
|
||||||
|
prob_idx.push_back(std::pair<int, double>(i, prob_step[i]));
|
||||||
|
}
|
||||||
|
// pruning of vacobulary
|
||||||
|
size_t cutoff_len = prob_step.size();
|
||||||
|
if (cutoff_prob < 1.0 || cutoff_top_n < cutoff_len) {
|
||||||
|
std::sort(
|
||||||
|
prob_idx.begin(), prob_idx.end(), pair_comp_second_rev<int, double>);
|
||||||
|
if (cutoff_prob < 1.0) {
|
||||||
|
double cum_prob = 0.0;
|
||||||
|
cutoff_len = 0;
|
||||||
|
for (size_t i = 0; i < prob_idx.size(); ++i) {
|
||||||
|
cum_prob += prob_idx[i].second;
|
||||||
|
cutoff_len += 1;
|
||||||
|
if (cum_prob >= cutoff_prob || cutoff_len >= cutoff_top_n) break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
prob_idx = std::vector<std::pair<int, double>>(
|
||||||
|
prob_idx.begin(), prob_idx.begin() + cutoff_len);
|
||||||
|
}
|
||||||
|
std::vector<std::pair<size_t, float>> log_prob_idx;
|
||||||
|
for (size_t i = 0; i < cutoff_len; ++i) {
|
||||||
|
log_prob_idx.push_back(std::pair<int, float>(
|
||||||
|
prob_idx[i].first, log(prob_idx[i].second + NUM_FLT_MIN)));
|
||||||
|
}
|
||||||
|
return log_prob_idx;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
std::vector<std::pair<double, std::string>> get_beam_search_result(
|
||||||
|
const std::vector<PathTrie *> &prefixes,
|
||||||
|
const std::vector<std::string> &vocabulary,
|
||||||
|
size_t beam_size) {
|
||||||
|
// allow for the post processing
|
||||||
|
std::vector<PathTrie *> space_prefixes;
|
||||||
|
if (space_prefixes.empty()) {
|
||||||
|
for (size_t i = 0; i < beam_size && i < prefixes.size(); ++i) {
|
||||||
|
space_prefixes.push_back(prefixes[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::sort(space_prefixes.begin(), space_prefixes.end(), prefix_compare);
|
||||||
|
std::vector<std::pair<double, std::string>> output_vecs;
|
||||||
|
for (size_t i = 0; i < beam_size && i < space_prefixes.size(); ++i) {
|
||||||
|
std::vector<int> output;
|
||||||
|
space_prefixes[i]->get_path_vec(output);
|
||||||
|
// convert index to string
|
||||||
|
std::string output_str;
|
||||||
|
for (size_t j = 0; j < output.size(); j++) {
|
||||||
|
output_str += vocabulary[output[j]];
|
||||||
|
}
|
||||||
|
std::pair<double, std::string> output_pair(-space_prefixes[i]->approx_ctc,
|
||||||
|
output_str);
|
||||||
|
output_vecs.emplace_back(output_pair);
|
||||||
|
}
|
||||||
|
|
||||||
|
return output_vecs;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t get_utf8_str_len(const std::string &str) {
|
||||||
|
size_t str_len = 0;
|
||||||
|
for (char c : str) {
|
||||||
|
str_len += ((c & 0xc0) != 0x80);
|
||||||
|
}
|
||||||
|
return str_len;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::string> split_utf8_str(const std::string &str) {
|
||||||
|
std::vector<std::string> result;
|
||||||
|
std::string out_str;
|
||||||
|
|
||||||
|
for (char c : str) {
|
||||||
|
if ((c & 0xc0) != 0x80) // new UTF-8 character
|
||||||
|
{
|
||||||
|
if (!out_str.empty()) {
|
||||||
|
result.push_back(out_str);
|
||||||
|
out_str.clear();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
out_str.append(1, c);
|
||||||
|
}
|
||||||
|
result.push_back(out_str);
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::string> split_str(const std::string &s,
|
||||||
|
const std::string &delim) {
|
||||||
|
std::vector<std::string> result;
|
||||||
|
std::size_t start = 0, delim_len = delim.size();
|
||||||
|
while (true) {
|
||||||
|
std::size_t end = s.find(delim, start);
|
||||||
|
if (end == std::string::npos) {
|
||||||
|
if (start < s.size()) {
|
||||||
|
result.push_back(s.substr(start));
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if (end > start) {
|
||||||
|
result.push_back(s.substr(start, end - start));
|
||||||
|
}
|
||||||
|
start = end + delim_len;
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool prefix_compare(const PathTrie *x, const PathTrie *y) {
|
||||||
|
if (x->score == y->score) {
|
||||||
|
if (x->character == y->character) {
|
||||||
|
return false;
|
||||||
|
} else {
|
||||||
|
return (x->character < y->character);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
return x->score > y->score;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void add_word_to_fst(const std::vector<int> &word,
|
||||||
|
fst::StdVectorFst *dictionary) {
|
||||||
|
if (dictionary->NumStates() == 0) {
|
||||||
|
fst::StdVectorFst::StateId start = dictionary->AddState();
|
||||||
|
assert(start == 0);
|
||||||
|
dictionary->SetStart(start);
|
||||||
|
}
|
||||||
|
fst::StdVectorFst::StateId src = dictionary->Start();
|
||||||
|
fst::StdVectorFst::StateId dst;
|
||||||
|
for (auto c : word) {
|
||||||
|
dst = dictionary->AddState();
|
||||||
|
dictionary->AddArc(src, fst::StdArc(c, c, 0, dst));
|
||||||
|
src = dst;
|
||||||
|
}
|
||||||
|
dictionary->SetFinal(dst, fst::StdArc::Weight::One());
|
||||||
|
}
|
||||||
|
|
||||||
|
bool add_word_to_dictionary(
|
||||||
|
const std::string &word,
|
||||||
|
const std::unordered_map<std::string, int> &char_map,
|
||||||
|
bool add_space,
|
||||||
|
int SPACE_ID,
|
||||||
|
fst::StdVectorFst *dictionary) {
|
||||||
|
auto characters = split_utf8_str(word);
|
||||||
|
|
||||||
|
std::vector<int> int_word;
|
||||||
|
|
||||||
|
for (auto &c : characters) {
|
||||||
|
if (c == " ") {
|
||||||
|
int_word.push_back(SPACE_ID);
|
||||||
|
} else {
|
||||||
|
auto int_c = char_map.find(c);
|
||||||
|
if (int_c != char_map.end()) {
|
||||||
|
int_word.push_back(int_c->second);
|
||||||
|
} else {
|
||||||
|
return false; // return without adding
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (add_space) {
|
||||||
|
int_word.push_back(SPACE_ID);
|
||||||
|
}
|
||||||
|
|
||||||
|
add_word_to_fst(int_word, dictionary);
|
||||||
|
return true; // return with successful adding
|
||||||
|
}
|
@ -0,0 +1,94 @@
|
|||||||
|
#ifndef DECODER_UTILS_H_
|
||||||
|
#define DECODER_UTILS_H_
|
||||||
|
|
||||||
|
#include <utility>
|
||||||
|
#include "fst/log.h"
|
||||||
|
#include "path_trie.h"
|
||||||
|
|
||||||
|
const float NUM_FLT_INF = std::numeric_limits<float>::max();
|
||||||
|
const float NUM_FLT_MIN = std::numeric_limits<float>::min();
|
||||||
|
|
||||||
|
// inline function for validation check
|
||||||
|
inline void check(
|
||||||
|
bool x, const char *expr, const char *file, int line, const char *err) {
|
||||||
|
if (!x) {
|
||||||
|
std::cout << "[" << file << ":" << line << "] ";
|
||||||
|
LOG(FATAL) << "\"" << expr << "\" check failed. " << err;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#define VALID_CHECK(x, info) \
|
||||||
|
check(static_cast<bool>(x), #x, __FILE__, __LINE__, info)
|
||||||
|
#define VALID_CHECK_EQ(x, y, info) VALID_CHECK((x) == (y), info)
|
||||||
|
#define VALID_CHECK_GT(x, y, info) VALID_CHECK((x) > (y), info)
|
||||||
|
#define VALID_CHECK_LT(x, y, info) VALID_CHECK((x) < (y), info)
|
||||||
|
|
||||||
|
|
||||||
|
// Function template for comparing two pairs
|
||||||
|
template <typename T1, typename T2>
|
||||||
|
bool pair_comp_first_rev(const std::pair<T1, T2> &a,
|
||||||
|
const std::pair<T1, T2> &b) {
|
||||||
|
return a.first > b.first;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Function template for comparing two pairs
|
||||||
|
template <typename T1, typename T2>
|
||||||
|
bool pair_comp_second_rev(const std::pair<T1, T2> &a,
|
||||||
|
const std::pair<T1, T2> &b) {
|
||||||
|
return a.second > b.second;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Return the sum of two probabilities in log scale
|
||||||
|
template <typename T>
|
||||||
|
T log_sum_exp(const T &x, const T &y) {
|
||||||
|
static T num_min = -std::numeric_limits<T>::max();
|
||||||
|
if (x <= num_min) return y;
|
||||||
|
if (y <= num_min) return x;
|
||||||
|
T xmax = std::max(x, y);
|
||||||
|
return std::log(std::exp(x - xmax) + std::exp(y - xmax)) + xmax;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Get pruned probability vector for each time step's beam search
|
||||||
|
std::vector<std::pair<size_t, float>> get_pruned_log_probs(
|
||||||
|
const std::vector<double> &prob_step,
|
||||||
|
double cutoff_prob,
|
||||||
|
size_t cutoff_top_n);
|
||||||
|
|
||||||
|
// Get beam search result from prefixes in trie tree
|
||||||
|
std::vector<std::pair<double, std::string>> get_beam_search_result(
|
||||||
|
const std::vector<PathTrie *> &prefixes,
|
||||||
|
const std::vector<std::string> &vocabulary,
|
||||||
|
size_t beam_size);
|
||||||
|
|
||||||
|
// Functor for prefix comparsion
|
||||||
|
bool prefix_compare(const PathTrie *x, const PathTrie *y);
|
||||||
|
|
||||||
|
/* Get length of utf8 encoding string
|
||||||
|
* See: http://stackoverflow.com/a/4063229
|
||||||
|
*/
|
||||||
|
size_t get_utf8_str_len(const std::string &str);
|
||||||
|
|
||||||
|
/* Split a string into a list of strings on a given string
|
||||||
|
* delimiter. NB: delimiters on beginning / end of string are
|
||||||
|
* trimmed. Eg, "FooBarFoo" split on "Foo" returns ["Bar"].
|
||||||
|
*/
|
||||||
|
std::vector<std::string> split_str(const std::string &s,
|
||||||
|
const std::string &delim);
|
||||||
|
|
||||||
|
/* Splits string into vector of strings representing
|
||||||
|
* UTF-8 characters (not same as chars)
|
||||||
|
*/
|
||||||
|
std::vector<std::string> split_utf8_str(const std::string &str);
|
||||||
|
|
||||||
|
// Add a word in index to the dicionary of fst
|
||||||
|
void add_word_to_fst(const std::vector<int> &word,
|
||||||
|
fst::StdVectorFst *dictionary);
|
||||||
|
|
||||||
|
// Add a word in string to dictionary
|
||||||
|
bool add_word_to_dictionary(
|
||||||
|
const std::string &word,
|
||||||
|
const std::unordered_map<std::string, int> &char_map,
|
||||||
|
bool add_space,
|
||||||
|
int SPACE_ID,
|
||||||
|
fst::StdVectorFst *dictionary);
|
||||||
|
#endif // DECODER_UTILS_H
|
@ -0,0 +1,33 @@
|
|||||||
|
%module swig_decoders
|
||||||
|
%{
|
||||||
|
#include "scorer.h"
|
||||||
|
#include "ctc_greedy_decoder.h"
|
||||||
|
#include "ctc_beam_search_decoder.h"
|
||||||
|
#include "decoder_utils.h"
|
||||||
|
%}
|
||||||
|
|
||||||
|
%include "std_vector.i"
|
||||||
|
%include "std_pair.i"
|
||||||
|
%include "std_string.i"
|
||||||
|
%import "decoder_utils.h"
|
||||||
|
|
||||||
|
namespace std {
|
||||||
|
%template(DoubleVector) std::vector<double>;
|
||||||
|
%template(IntVector) std::vector<int>;
|
||||||
|
%template(StringVector) std::vector<std::string>;
|
||||||
|
%template(VectorOfStructVector) std::vector<std::vector<double> >;
|
||||||
|
%template(FloatVector) std::vector<float>;
|
||||||
|
%template(Pair) std::pair<float, std::string>;
|
||||||
|
%template(PairFloatStringVector) std::vector<std::pair<float, std::string> >;
|
||||||
|
%template(PairDoubleStringVector) std::vector<std::pair<double, std::string> >;
|
||||||
|
%template(PairDoubleStringVector2) std::vector<std::vector<std::pair<double, std::string> > >;
|
||||||
|
%template(DoubleVector3) std::vector<std::vector<std::vector<double> > >;
|
||||||
|
}
|
||||||
|
|
||||||
|
%template(IntDoublePairCompSecondRev) pair_comp_second_rev<int, double>;
|
||||||
|
%template(StringDoublePairCompSecondRev) pair_comp_second_rev<std::string, double>;
|
||||||
|
%template(DoubleStringPairCompFirstRev) pair_comp_first_rev<double, std::string>;
|
||||||
|
|
||||||
|
%include "scorer.h"
|
||||||
|
%include "ctc_greedy_decoder.h"
|
||||||
|
%include "ctc_beam_search_decoder.h"
|
@ -0,0 +1,148 @@
|
|||||||
|
#include "path_trie.h"
|
||||||
|
|
||||||
|
#include <algorithm>
|
||||||
|
#include <limits>
|
||||||
|
#include <memory>
|
||||||
|
#include <utility>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include "decoder_utils.h"
|
||||||
|
|
||||||
|
PathTrie::PathTrie() {
|
||||||
|
log_prob_b_prev = -NUM_FLT_INF;
|
||||||
|
log_prob_nb_prev = -NUM_FLT_INF;
|
||||||
|
log_prob_b_cur = -NUM_FLT_INF;
|
||||||
|
log_prob_nb_cur = -NUM_FLT_INF;
|
||||||
|
score = -NUM_FLT_INF;
|
||||||
|
|
||||||
|
ROOT_ = -1;
|
||||||
|
character = ROOT_;
|
||||||
|
exists_ = true;
|
||||||
|
parent = nullptr;
|
||||||
|
|
||||||
|
dictionary_ = nullptr;
|
||||||
|
dictionary_state_ = 0;
|
||||||
|
has_dictionary_ = false;
|
||||||
|
|
||||||
|
matcher_ = nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
PathTrie::~PathTrie() {
|
||||||
|
for (auto child : children_) {
|
||||||
|
delete child.second;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
PathTrie* PathTrie::get_path_trie(int new_char, bool reset) {
|
||||||
|
auto child = children_.begin();
|
||||||
|
for (child = children_.begin(); child != children_.end(); ++child) {
|
||||||
|
if (child->first == new_char) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (child != children_.end()) {
|
||||||
|
if (!child->second->exists_) {
|
||||||
|
child->second->exists_ = true;
|
||||||
|
child->second->log_prob_b_prev = -NUM_FLT_INF;
|
||||||
|
child->second->log_prob_nb_prev = -NUM_FLT_INF;
|
||||||
|
child->second->log_prob_b_cur = -NUM_FLT_INF;
|
||||||
|
child->second->log_prob_nb_cur = -NUM_FLT_INF;
|
||||||
|
}
|
||||||
|
return (child->second);
|
||||||
|
} else {
|
||||||
|
if (has_dictionary_) {
|
||||||
|
matcher_->SetState(dictionary_state_);
|
||||||
|
bool found = matcher_->Find(new_char);
|
||||||
|
if (!found) {
|
||||||
|
// Adding this character causes word outside dictionary
|
||||||
|
auto FSTZERO = fst::TropicalWeight::Zero();
|
||||||
|
auto final_weight = dictionary_->Final(dictionary_state_);
|
||||||
|
bool is_final = (final_weight != FSTZERO);
|
||||||
|
if (is_final && reset) {
|
||||||
|
dictionary_state_ = dictionary_->Start();
|
||||||
|
}
|
||||||
|
return nullptr;
|
||||||
|
} else {
|
||||||
|
PathTrie* new_path = new PathTrie;
|
||||||
|
new_path->character = new_char;
|
||||||
|
new_path->parent = this;
|
||||||
|
new_path->dictionary_ = dictionary_;
|
||||||
|
new_path->dictionary_state_ = matcher_->Value().nextstate;
|
||||||
|
new_path->has_dictionary_ = true;
|
||||||
|
new_path->matcher_ = matcher_;
|
||||||
|
children_.push_back(std::make_pair(new_char, new_path));
|
||||||
|
return new_path;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
PathTrie* new_path = new PathTrie;
|
||||||
|
new_path->character = new_char;
|
||||||
|
new_path->parent = this;
|
||||||
|
children_.push_back(std::make_pair(new_char, new_path));
|
||||||
|
return new_path;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
PathTrie* PathTrie::get_path_vec(std::vector<int>& output) {
|
||||||
|
return get_path_vec(output, ROOT_);
|
||||||
|
}
|
||||||
|
|
||||||
|
PathTrie* PathTrie::get_path_vec(std::vector<int>& output,
|
||||||
|
int stop,
|
||||||
|
size_t max_steps) {
|
||||||
|
if (character == stop || character == ROOT_ || output.size() == max_steps) {
|
||||||
|
std::reverse(output.begin(), output.end());
|
||||||
|
return this;
|
||||||
|
} else {
|
||||||
|
output.push_back(character);
|
||||||
|
return parent->get_path_vec(output, stop, max_steps);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void PathTrie::iterate_to_vec(std::vector<PathTrie*>& output) {
|
||||||
|
if (exists_) {
|
||||||
|
log_prob_b_prev = log_prob_b_cur;
|
||||||
|
log_prob_nb_prev = log_prob_nb_cur;
|
||||||
|
|
||||||
|
log_prob_b_cur = -NUM_FLT_INF;
|
||||||
|
log_prob_nb_cur = -NUM_FLT_INF;
|
||||||
|
|
||||||
|
score = log_sum_exp(log_prob_b_prev, log_prob_nb_prev);
|
||||||
|
output.push_back(this);
|
||||||
|
}
|
||||||
|
for (auto child : children_) {
|
||||||
|
child.second->iterate_to_vec(output);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void PathTrie::remove() {
|
||||||
|
exists_ = false;
|
||||||
|
|
||||||
|
if (children_.size() == 0) {
|
||||||
|
auto child = parent->children_.begin();
|
||||||
|
for (child = parent->children_.begin(); child != parent->children_.end();
|
||||||
|
++child) {
|
||||||
|
if (child->first == character) {
|
||||||
|
parent->children_.erase(child);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (parent->children_.size() == 0 && !parent->exists_) {
|
||||||
|
parent->remove();
|
||||||
|
}
|
||||||
|
|
||||||
|
delete this;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void PathTrie::set_dictionary(fst::StdVectorFst* dictionary) {
|
||||||
|
dictionary_ = dictionary;
|
||||||
|
dictionary_state_ = dictionary->Start();
|
||||||
|
has_dictionary_ = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
using FSTMATCH = fst::SortedMatcher<fst::StdVectorFst>;
|
||||||
|
void PathTrie::set_matcher(std::shared_ptr<FSTMATCH> matcher) {
|
||||||
|
matcher_ = matcher;
|
||||||
|
}
|
@ -0,0 +1,67 @@
|
|||||||
|
#ifndef PATH_TRIE_H
|
||||||
|
#define PATH_TRIE_H
|
||||||
|
|
||||||
|
#include <algorithm>
|
||||||
|
#include <limits>
|
||||||
|
#include <memory>
|
||||||
|
#include <utility>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include "fst/fstlib.h"
|
||||||
|
|
||||||
|
/* Trie tree for prefix storing and manipulating, with a dictionary in
|
||||||
|
* finite-state transducer for spelling correction.
|
||||||
|
*/
|
||||||
|
class PathTrie {
|
||||||
|
public:
|
||||||
|
PathTrie();
|
||||||
|
~PathTrie();
|
||||||
|
|
||||||
|
// get new prefix after appending new char
|
||||||
|
PathTrie* get_path_trie(int new_char, bool reset = true);
|
||||||
|
|
||||||
|
// get the prefix in index from root to current node
|
||||||
|
PathTrie* get_path_vec(std::vector<int>& output);
|
||||||
|
|
||||||
|
// get the prefix in index from some stop node to current nodel
|
||||||
|
PathTrie* get_path_vec(std::vector<int>& output,
|
||||||
|
int stop,
|
||||||
|
size_t max_steps = std::numeric_limits<size_t>::max());
|
||||||
|
|
||||||
|
// update log probs
|
||||||
|
void iterate_to_vec(std::vector<PathTrie*>& output);
|
||||||
|
|
||||||
|
// set dictionary for FST
|
||||||
|
void set_dictionary(fst::StdVectorFst* dictionary);
|
||||||
|
|
||||||
|
void set_matcher(std::shared_ptr<fst::SortedMatcher<fst::StdVectorFst>>);
|
||||||
|
|
||||||
|
bool is_empty() { return ROOT_ == character; }
|
||||||
|
|
||||||
|
// remove current path from root
|
||||||
|
void remove();
|
||||||
|
|
||||||
|
float log_prob_b_prev;
|
||||||
|
float log_prob_nb_prev;
|
||||||
|
float log_prob_b_cur;
|
||||||
|
float log_prob_nb_cur;
|
||||||
|
float score;
|
||||||
|
float approx_ctc;
|
||||||
|
int character;
|
||||||
|
PathTrie* parent;
|
||||||
|
|
||||||
|
private:
|
||||||
|
int ROOT_;
|
||||||
|
bool exists_;
|
||||||
|
bool has_dictionary_;
|
||||||
|
|
||||||
|
std::vector<std::pair<int, PathTrie*>> children_;
|
||||||
|
|
||||||
|
// pointer to dictionary of FST
|
||||||
|
fst::StdVectorFst* dictionary_;
|
||||||
|
fst::StdVectorFst::StateId dictionary_state_;
|
||||||
|
// true if finding ars in FST
|
||||||
|
std::shared_ptr<fst::SortedMatcher<fst::StdVectorFst>> matcher_;
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif // PATH_TRIE_H
|
@ -0,0 +1,234 @@
|
|||||||
|
#include "scorer.h"
|
||||||
|
|
||||||
|
#include <unistd.h>
|
||||||
|
#include <iostream>
|
||||||
|
|
||||||
|
#include "lm/config.hh"
|
||||||
|
#include "lm/model.hh"
|
||||||
|
#include "lm/state.hh"
|
||||||
|
#include "util/string_piece.hh"
|
||||||
|
#include "util/tokenize_piece.hh"
|
||||||
|
|
||||||
|
#include "decoder_utils.h"
|
||||||
|
|
||||||
|
using namespace lm::ngram;
|
||||||
|
|
||||||
|
Scorer::Scorer(double alpha,
|
||||||
|
double beta,
|
||||||
|
const std::string& lm_path,
|
||||||
|
const std::vector<std::string>& vocab_list) {
|
||||||
|
this->alpha = alpha;
|
||||||
|
this->beta = beta;
|
||||||
|
|
||||||
|
dictionary = nullptr;
|
||||||
|
is_character_based_ = true;
|
||||||
|
language_model_ = nullptr;
|
||||||
|
|
||||||
|
max_order_ = 0;
|
||||||
|
dict_size_ = 0;
|
||||||
|
SPACE_ID_ = -1;
|
||||||
|
|
||||||
|
setup(lm_path, vocab_list);
|
||||||
|
}
|
||||||
|
|
||||||
|
Scorer::~Scorer() {
|
||||||
|
if (language_model_ != nullptr) {
|
||||||
|
delete static_cast<lm::base::Model*>(language_model_);
|
||||||
|
}
|
||||||
|
if (dictionary != nullptr) {
|
||||||
|
delete static_cast<fst::StdVectorFst*>(dictionary);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Scorer::setup(const std::string& lm_path,
|
||||||
|
const std::vector<std::string>& vocab_list) {
|
||||||
|
// load language model
|
||||||
|
load_lm(lm_path);
|
||||||
|
// set char map for scorer
|
||||||
|
set_char_map(vocab_list);
|
||||||
|
// fill the dictionary for FST
|
||||||
|
if (!is_character_based()) {
|
||||||
|
fill_dictionary(true);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Scorer::load_lm(const std::string& lm_path) {
|
||||||
|
const char* filename = lm_path.c_str();
|
||||||
|
VALID_CHECK_EQ(access(filename, F_OK), 0, "Invalid language model path");
|
||||||
|
|
||||||
|
RetriveStrEnumerateVocab enumerate;
|
||||||
|
lm::ngram::Config config;
|
||||||
|
config.enumerate_vocab = &enumerate;
|
||||||
|
language_model_ = lm::ngram::LoadVirtual(filename, config);
|
||||||
|
max_order_ = static_cast<lm::base::Model*>(language_model_)->Order();
|
||||||
|
vocabulary_ = enumerate.vocabulary;
|
||||||
|
for (size_t i = 0; i < vocabulary_.size(); ++i) {
|
||||||
|
if (is_character_based_ && vocabulary_[i] != UNK_TOKEN &&
|
||||||
|
vocabulary_[i] != START_TOKEN && vocabulary_[i] != END_TOKEN &&
|
||||||
|
get_utf8_str_len(enumerate.vocabulary[i]) > 1) {
|
||||||
|
is_character_based_ = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
double Scorer::get_log_cond_prob(const std::vector<std::string>& words) {
|
||||||
|
lm::base::Model* model = static_cast<lm::base::Model*>(language_model_);
|
||||||
|
double cond_prob;
|
||||||
|
lm::ngram::State state, tmp_state, out_state;
|
||||||
|
// avoid to inserting <s> in begin
|
||||||
|
model->NullContextWrite(&state);
|
||||||
|
for (size_t i = 0; i < words.size(); ++i) {
|
||||||
|
lm::WordIndex word_index = model->BaseVocabulary().Index(words[i]);
|
||||||
|
// encounter OOV
|
||||||
|
if (word_index == 0) {
|
||||||
|
return OOV_SCORE;
|
||||||
|
}
|
||||||
|
cond_prob = model->BaseScore(&state, word_index, &out_state);
|
||||||
|
tmp_state = state;
|
||||||
|
state = out_state;
|
||||||
|
out_state = tmp_state;
|
||||||
|
}
|
||||||
|
// return log10 prob
|
||||||
|
return cond_prob;
|
||||||
|
}
|
||||||
|
|
||||||
|
double Scorer::get_sent_log_prob(const std::vector<std::string>& words) {
|
||||||
|
std::vector<std::string> sentence;
|
||||||
|
if (words.size() == 0) {
|
||||||
|
for (size_t i = 0; i < max_order_; ++i) {
|
||||||
|
sentence.push_back(START_TOKEN);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for (size_t i = 0; i < max_order_ - 1; ++i) {
|
||||||
|
sentence.push_back(START_TOKEN);
|
||||||
|
}
|
||||||
|
sentence.insert(sentence.end(), words.begin(), words.end());
|
||||||
|
}
|
||||||
|
sentence.push_back(END_TOKEN);
|
||||||
|
return get_log_prob(sentence);
|
||||||
|
}
|
||||||
|
|
||||||
|
double Scorer::get_log_prob(const std::vector<std::string>& words) {
|
||||||
|
assert(words.size() > max_order_);
|
||||||
|
double score = 0.0;
|
||||||
|
for (size_t i = 0; i < words.size() - max_order_ + 1; ++i) {
|
||||||
|
std::vector<std::string> ngram(words.begin() + i,
|
||||||
|
words.begin() + i + max_order_);
|
||||||
|
score += get_log_cond_prob(ngram);
|
||||||
|
}
|
||||||
|
return score;
|
||||||
|
}
|
||||||
|
|
||||||
|
void Scorer::reset_params(float alpha, float beta) {
|
||||||
|
this->alpha = alpha;
|
||||||
|
this->beta = beta;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string Scorer::vec2str(const std::vector<int>& input) {
|
||||||
|
std::string word;
|
||||||
|
for (auto ind : input) {
|
||||||
|
word += char_list_[ind];
|
||||||
|
}
|
||||||
|
return word;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::string> Scorer::split_labels(const std::vector<int>& labels) {
|
||||||
|
if (labels.empty()) return {};
|
||||||
|
|
||||||
|
std::string s = vec2str(labels);
|
||||||
|
std::vector<std::string> words;
|
||||||
|
if (is_character_based_) {
|
||||||
|
words = split_utf8_str(s);
|
||||||
|
} else {
|
||||||
|
words = split_str(s, " ");
|
||||||
|
}
|
||||||
|
return words;
|
||||||
|
}
|
||||||
|
|
||||||
|
void Scorer::set_char_map(const std::vector<std::string>& char_list) {
|
||||||
|
char_list_ = char_list;
|
||||||
|
char_map_.clear();
|
||||||
|
|
||||||
|
for (size_t i = 0; i < char_list_.size(); i++) {
|
||||||
|
if (char_list_[i] == " ") {
|
||||||
|
SPACE_ID_ = i;
|
||||||
|
char_map_[' '] = i;
|
||||||
|
} else if (char_list_[i].size() == 1) {
|
||||||
|
char_map_[char_list_[i][0]] = i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::string> Scorer::make_ngram(PathTrie* prefix) {
|
||||||
|
std::vector<std::string> ngram;
|
||||||
|
PathTrie* current_node = prefix;
|
||||||
|
PathTrie* new_node = nullptr;
|
||||||
|
|
||||||
|
for (int order = 0; order < max_order_; order++) {
|
||||||
|
std::vector<int> prefix_vec;
|
||||||
|
|
||||||
|
if (is_character_based_) {
|
||||||
|
new_node = current_node->get_path_vec(prefix_vec, SPACE_ID_, 1);
|
||||||
|
current_node = new_node;
|
||||||
|
} else {
|
||||||
|
new_node = current_node->get_path_vec(prefix_vec, SPACE_ID_);
|
||||||
|
current_node = new_node->parent; // Skipping spaces
|
||||||
|
}
|
||||||
|
|
||||||
|
// reconstruct word
|
||||||
|
std::string word = vec2str(prefix_vec);
|
||||||
|
ngram.push_back(word);
|
||||||
|
|
||||||
|
if (new_node->character == -1) {
|
||||||
|
// No more spaces, but still need order
|
||||||
|
for (int i = 0; i < max_order_ - order - 1; i++) {
|
||||||
|
ngram.push_back(START_TOKEN);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::reverse(ngram.begin(), ngram.end());
|
||||||
|
return ngram;
|
||||||
|
}
|
||||||
|
|
||||||
|
void Scorer::fill_dictionary(bool add_space) {
|
||||||
|
fst::StdVectorFst dictionary;
|
||||||
|
// First reverse char_list so ints can be accessed by chars
|
||||||
|
std::unordered_map<std::string, int> char_map;
|
||||||
|
for (size_t i = 0; i < char_list_.size(); i++) {
|
||||||
|
char_map[char_list_[i]] = i;
|
||||||
|
}
|
||||||
|
|
||||||
|
// For each unigram convert to ints and put in trie
|
||||||
|
int dict_size = 0;
|
||||||
|
for (const auto& word : vocabulary_) {
|
||||||
|
bool added = add_word_to_dictionary(
|
||||||
|
word, char_map, add_space, SPACE_ID_, &dictionary);
|
||||||
|
dict_size += added ? 1 : 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
dict_size_ = dict_size;
|
||||||
|
|
||||||
|
/* Simplify FST
|
||||||
|
|
||||||
|
* This gets rid of "epsilon" transitions in the FST.
|
||||||
|
* These are transitions that don't require a string input to be taken.
|
||||||
|
* Getting rid of them is necessary to make the FST determinisitc, but
|
||||||
|
* can greatly increase the size of the FST
|
||||||
|
*/
|
||||||
|
fst::RmEpsilon(&dictionary);
|
||||||
|
fst::StdVectorFst* new_dict = new fst::StdVectorFst;
|
||||||
|
|
||||||
|
/* This makes the FST deterministic, meaning for any string input there's
|
||||||
|
* only one possible state the FST could be in. It is assumed our
|
||||||
|
* dictionary is deterministic when using it.
|
||||||
|
* (lest we'd have to check for multiple transitions at each state)
|
||||||
|
*/
|
||||||
|
fst::Determinize(dictionary, new_dict);
|
||||||
|
|
||||||
|
/* Finds the simplest equivalent fst. This is unnecessary but decreases
|
||||||
|
* memory usage of the dictionary
|
||||||
|
*/
|
||||||
|
fst::Minimize(new_dict);
|
||||||
|
this->dictionary = new_dict;
|
||||||
|
}
|
@ -0,0 +1,112 @@
|
|||||||
|
#ifndef SCORER_H_
|
||||||
|
#define SCORER_H_
|
||||||
|
|
||||||
|
#include <memory>
|
||||||
|
#include <string>
|
||||||
|
#include <unordered_map>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include "lm/enumerate_vocab.hh"
|
||||||
|
#include "lm/virtual_interface.hh"
|
||||||
|
#include "lm/word_index.hh"
|
||||||
|
#include "util/string_piece.hh"
|
||||||
|
|
||||||
|
#include "path_trie.h"
|
||||||
|
|
||||||
|
const double OOV_SCORE = -1000.0;
|
||||||
|
const std::string START_TOKEN = "<s>";
|
||||||
|
const std::string UNK_TOKEN = "<unk>";
|
||||||
|
const std::string END_TOKEN = "</s>";
|
||||||
|
|
||||||
|
// Implement a callback to retrive the dictionary of language model.
|
||||||
|
class RetriveStrEnumerateVocab : public lm::EnumerateVocab {
|
||||||
|
public:
|
||||||
|
RetriveStrEnumerateVocab() {}
|
||||||
|
|
||||||
|
void Add(lm::WordIndex index, const StringPiece &str) {
|
||||||
|
vocabulary.push_back(std::string(str.data(), str.length()));
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::string> vocabulary;
|
||||||
|
};
|
||||||
|
|
||||||
|
/* External scorer to query score for n-gram or sentence, including language
|
||||||
|
* model scoring and word insertion.
|
||||||
|
*
|
||||||
|
* Example:
|
||||||
|
* Scorer scorer(alpha, beta, "path_of_language_model");
|
||||||
|
* scorer.get_log_cond_prob({ "WORD1", "WORD2", "WORD3" });
|
||||||
|
* scorer.get_sent_log_prob({ "WORD1", "WORD2", "WORD3" });
|
||||||
|
*/
|
||||||
|
class Scorer {
|
||||||
|
public:
|
||||||
|
Scorer(double alpha,
|
||||||
|
double beta,
|
||||||
|
const std::string &lm_path,
|
||||||
|
const std::vector<std::string> &vocabulary);
|
||||||
|
~Scorer();
|
||||||
|
|
||||||
|
double get_log_cond_prob(const std::vector<std::string> &words);
|
||||||
|
|
||||||
|
double get_sent_log_prob(const std::vector<std::string> &words);
|
||||||
|
|
||||||
|
// return the max order
|
||||||
|
size_t get_max_order() const { return max_order_; }
|
||||||
|
|
||||||
|
// return the dictionary size of language model
|
||||||
|
size_t get_dict_size() const { return dict_size_; }
|
||||||
|
|
||||||
|
// retrun true if the language model is character based
|
||||||
|
bool is_character_based() const { return is_character_based_; }
|
||||||
|
|
||||||
|
// reset params alpha & beta
|
||||||
|
void reset_params(float alpha, float beta);
|
||||||
|
|
||||||
|
// make ngram for a given prefix
|
||||||
|
std::vector<std::string> make_ngram(PathTrie *prefix);
|
||||||
|
|
||||||
|
// trransform the labels in index to the vector of words (word based lm) or
|
||||||
|
// the vector of characters (character based lm)
|
||||||
|
std::vector<std::string> split_labels(const std::vector<int> &labels);
|
||||||
|
|
||||||
|
// language model weight
|
||||||
|
double alpha;
|
||||||
|
// word insertion weight
|
||||||
|
double beta;
|
||||||
|
|
||||||
|
// pointer to the dictionary of FST
|
||||||
|
void *dictionary;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
// necessary setup: load language model, set char map, fill FST's dictionary
|
||||||
|
void setup(const std::string &lm_path,
|
||||||
|
const std::vector<std::string> &vocab_list);
|
||||||
|
|
||||||
|
// load language model from given path
|
||||||
|
void load_lm(const std::string &lm_path);
|
||||||
|
|
||||||
|
// fill dictionary for FST
|
||||||
|
void fill_dictionary(bool add_space);
|
||||||
|
|
||||||
|
// set char map
|
||||||
|
void set_char_map(const std::vector<std::string> &char_list);
|
||||||
|
|
||||||
|
double get_log_prob(const std::vector<std::string> &words);
|
||||||
|
|
||||||
|
// translate the vector in index to string
|
||||||
|
std::string vec2str(const std::vector<int> &input);
|
||||||
|
|
||||||
|
private:
|
||||||
|
void *language_model_;
|
||||||
|
bool is_character_based_;
|
||||||
|
size_t max_order_;
|
||||||
|
size_t dict_size_;
|
||||||
|
|
||||||
|
int SPACE_ID_;
|
||||||
|
std::vector<std::string> char_list_;
|
||||||
|
std::unordered_map<char, int> char_map_;
|
||||||
|
|
||||||
|
std::vector<std::string> vocabulary_;
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif // SCORER_H_
|
@ -0,0 +1,121 @@
|
|||||||
|
"""Script to build and install decoder package."""
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
from setuptools import setup, Extension, distutils
|
||||||
|
import glob
|
||||||
|
import platform
|
||||||
|
import os, sys
|
||||||
|
import multiprocessing.pool
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description=__doc__)
|
||||||
|
parser.add_argument(
|
||||||
|
"--num_processes",
|
||||||
|
default=1,
|
||||||
|
type=int,
|
||||||
|
help="Number of cpu processes to build package. (default: %(default)d)")
|
||||||
|
args = parser.parse_known_args()
|
||||||
|
|
||||||
|
# reconstruct sys.argv to pass to setup below
|
||||||
|
sys.argv = [sys.argv[0]] + args[1]
|
||||||
|
|
||||||
|
|
||||||
|
# monkey-patch for parallel compilation
|
||||||
|
# See: https://stackoverflow.com/a/13176803
|
||||||
|
def parallelCCompile(self,
|
||||||
|
sources,
|
||||||
|
output_dir=None,
|
||||||
|
macros=None,
|
||||||
|
include_dirs=None,
|
||||||
|
debug=0,
|
||||||
|
extra_preargs=None,
|
||||||
|
extra_postargs=None,
|
||||||
|
depends=None):
|
||||||
|
# those lines are copied from distutils.ccompiler.CCompiler directly
|
||||||
|
macros, objects, extra_postargs, pp_opts, build = self._setup_compile(
|
||||||
|
output_dir, macros, include_dirs, sources, depends, extra_postargs)
|
||||||
|
cc_args = self._get_cc_args(pp_opts, debug, extra_preargs)
|
||||||
|
|
||||||
|
# parallel code
|
||||||
|
def _single_compile(obj):
|
||||||
|
try:
|
||||||
|
src, ext = build[obj]
|
||||||
|
except KeyError:
|
||||||
|
return
|
||||||
|
self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts)
|
||||||
|
|
||||||
|
# convert to list, imap is evaluated on-demand
|
||||||
|
thread_pool = multiprocessing.pool.ThreadPool(args[0].num_processes)
|
||||||
|
list(thread_pool.imap(_single_compile, objects))
|
||||||
|
return objects
|
||||||
|
|
||||||
|
|
||||||
|
def compile_test(header, library):
|
||||||
|
dummy_path = os.path.join(os.path.dirname(__file__), "dummy")
|
||||||
|
command = "bash -c \"g++ -include " + header \
|
||||||
|
+ " -l" + library + " -x c++ - <<<'int main() {}' -o " \
|
||||||
|
+ dummy_path + " >/dev/null 2>/dev/null && rm " \
|
||||||
|
+ dummy_path + " 2>/dev/null\""
|
||||||
|
return os.system(command) == 0
|
||||||
|
|
||||||
|
|
||||||
|
# hack compile to support parallel compiling
|
||||||
|
distutils.ccompiler.CCompiler.compile = parallelCCompile
|
||||||
|
|
||||||
|
FILES = glob.glob('kenlm/util/*.cc') \
|
||||||
|
+ glob.glob('kenlm/lm/*.cc') \
|
||||||
|
+ glob.glob('kenlm/util/double-conversion/*.cc')
|
||||||
|
|
||||||
|
FILES += glob.glob('openfst-1.6.3/src/lib/*.cc')
|
||||||
|
|
||||||
|
# FILES + glob.glob('glog/src/*.cc')
|
||||||
|
FILES = [
|
||||||
|
fn for fn in FILES
|
||||||
|
if not (fn.endswith('main.cc') or fn.endswith('test.cc') or fn.endswith(
|
||||||
|
'unittest.cc'))
|
||||||
|
]
|
||||||
|
|
||||||
|
LIBS = ['stdc++']
|
||||||
|
if platform.system() != 'Darwin':
|
||||||
|
LIBS.append('rt')
|
||||||
|
|
||||||
|
ARGS = ['-O3', '-DNDEBUG', '-DKENLM_MAX_ORDER=6', '-std=c++11']
|
||||||
|
|
||||||
|
if compile_test('zlib.h', 'z'):
|
||||||
|
ARGS.append('-DHAVE_ZLIB')
|
||||||
|
LIBS.append('z')
|
||||||
|
|
||||||
|
if compile_test('bzlib.h', 'bz2'):
|
||||||
|
ARGS.append('-DHAVE_BZLIB')
|
||||||
|
LIBS.append('bz2')
|
||||||
|
|
||||||
|
if compile_test('lzma.h', 'lzma'):
|
||||||
|
ARGS.append('-DHAVE_XZLIB')
|
||||||
|
LIBS.append('lzma')
|
||||||
|
|
||||||
|
os.system('swig -python -c++ ./decoders.i')
|
||||||
|
|
||||||
|
decoders_module = [
|
||||||
|
Extension(
|
||||||
|
name='_swig_decoders',
|
||||||
|
sources=FILES + glob.glob('*.cxx') + glob.glob('*.cpp'),
|
||||||
|
language='c++',
|
||||||
|
include_dirs=[
|
||||||
|
'.',
|
||||||
|
'kenlm',
|
||||||
|
'openfst-1.6.3/src/include',
|
||||||
|
'ThreadPool',
|
||||||
|
#'glog/src'
|
||||||
|
],
|
||||||
|
libraries=LIBS,
|
||||||
|
extra_compile_args=ARGS)
|
||||||
|
]
|
||||||
|
|
||||||
|
setup(
|
||||||
|
name='swig_decoders',
|
||||||
|
version='0.1',
|
||||||
|
description="""CTC decoders""",
|
||||||
|
ext_modules=decoders_module,
|
||||||
|
py_modules=['swig_decoders'], )
|
@ -0,0 +1,21 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
if [ ! -d kenlm ]; then
|
||||||
|
git clone https://github.com/luotao1/kenlm.git
|
||||||
|
echo -e "\n"
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -d openfst-1.6.3 ]; then
|
||||||
|
echo "Download and extract openfst ..."
|
||||||
|
wget http://www.openfst.org/twiki/pub/FST/FstDownload/openfst-1.6.3.tar.gz
|
||||||
|
tar -xzvf openfst-1.6.3.tar.gz
|
||||||
|
echo -e "\n"
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -d ThreadPool ]; then
|
||||||
|
git clone https://github.com/progschj/ThreadPool.git
|
||||||
|
echo -e "\n"
|
||||||
|
fi
|
||||||
|
|
||||||
|
echo "Install decoders ..."
|
||||||
|
python setup.py install --num_processes 4
|
@ -0,0 +1,116 @@
|
|||||||
|
"""Wrapper for various CTC decoders in SWIG."""
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import swig_decoders
|
||||||
|
|
||||||
|
|
||||||
|
class Scorer(swig_decoders.Scorer):
|
||||||
|
"""Wrapper for Scorer.
|
||||||
|
|
||||||
|
:param alpha: Parameter associated with language model. Don't use
|
||||||
|
language model when alpha = 0.
|
||||||
|
:type alpha: float
|
||||||
|
:param beta: Parameter associated with word count. Don't use word
|
||||||
|
count when beta = 0.
|
||||||
|
:type beta: float
|
||||||
|
:model_path: Path to load language model.
|
||||||
|
:type model_path: basestring
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, alpha, beta, model_path, vocabulary):
|
||||||
|
swig_decoders.Scorer.__init__(self, alpha, beta, model_path, vocabulary)
|
||||||
|
|
||||||
|
|
||||||
|
def ctc_greedy_decoder(probs_seq, vocabulary):
|
||||||
|
"""Wrapper for ctc best path decoder in swig.
|
||||||
|
|
||||||
|
:param probs_seq: 2-D list of probability distributions over each time
|
||||||
|
step, with each element being a list of normalized
|
||||||
|
probabilities over vocabulary and blank.
|
||||||
|
:type probs_seq: 2-D list
|
||||||
|
:param vocabulary: Vocabulary list.
|
||||||
|
:type vocabulary: list
|
||||||
|
:return: Decoding result string.
|
||||||
|
:rtype: basestring
|
||||||
|
"""
|
||||||
|
return swig_decoders.ctc_greedy_decoder(probs_seq.tolist(), vocabulary)
|
||||||
|
|
||||||
|
|
||||||
|
def ctc_beam_search_decoder(probs_seq,
|
||||||
|
vocabulary,
|
||||||
|
beam_size,
|
||||||
|
cutoff_prob=1.0,
|
||||||
|
cutoff_top_n=40,
|
||||||
|
ext_scoring_func=None):
|
||||||
|
"""Wrapper for the CTC Beam Search Decoder.
|
||||||
|
|
||||||
|
:param probs_seq: 2-D list of probability distributions over each time
|
||||||
|
step, with each element being a list of normalized
|
||||||
|
probabilities over vocabulary and blank.
|
||||||
|
:type probs_seq: 2-D list
|
||||||
|
:param vocabulary: Vocabulary list.
|
||||||
|
:type vocabulary: list
|
||||||
|
:param beam_size: Width for beam search.
|
||||||
|
:type beam_size: int
|
||||||
|
:param cutoff_prob: Cutoff probability in pruning,
|
||||||
|
default 1.0, no pruning.
|
||||||
|
:type cutoff_prob: float
|
||||||
|
:param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n
|
||||||
|
characters with highest probs in vocabulary will be
|
||||||
|
used in beam search, default 40.
|
||||||
|
:type cutoff_top_n: int
|
||||||
|
:param ext_scoring_func: External scoring function for
|
||||||
|
partially decoded sentence, e.g. word count
|
||||||
|
or language model.
|
||||||
|
:type external_scoring_func: callable
|
||||||
|
:return: List of tuples of log probability and sentence as decoding
|
||||||
|
results, in descending order of the probability.
|
||||||
|
:rtype: list
|
||||||
|
"""
|
||||||
|
return swig_decoders.ctc_beam_search_decoder(probs_seq.tolist(), vocabulary,
|
||||||
|
beam_size, cutoff_prob,
|
||||||
|
cutoff_top_n, ext_scoring_func)
|
||||||
|
|
||||||
|
|
||||||
|
def ctc_beam_search_decoder_batch(probs_split,
|
||||||
|
vocabulary,
|
||||||
|
beam_size,
|
||||||
|
num_processes,
|
||||||
|
cutoff_prob=1.0,
|
||||||
|
cutoff_top_n=40,
|
||||||
|
ext_scoring_func=None):
|
||||||
|
"""Wrapper for the batched CTC beam search decoder.
|
||||||
|
|
||||||
|
:param probs_seq: 3-D list with each element as an instance of 2-D list
|
||||||
|
of probabilities used by ctc_beam_search_decoder().
|
||||||
|
:type probs_seq: 3-D list
|
||||||
|
:param vocabulary: Vocabulary list.
|
||||||
|
:type vocabulary: list
|
||||||
|
:param beam_size: Width for beam search.
|
||||||
|
:type beam_size: int
|
||||||
|
:param num_processes: Number of parallel processes.
|
||||||
|
:type num_processes: int
|
||||||
|
:param cutoff_prob: Cutoff probability in vocabulary pruning,
|
||||||
|
default 1.0, no pruning.
|
||||||
|
:type cutoff_prob: float
|
||||||
|
:param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n
|
||||||
|
characters with highest probs in vocabulary will be
|
||||||
|
used in beam search, default 40.
|
||||||
|
:type cutoff_top_n: int
|
||||||
|
:param num_processes: Number of parallel processes.
|
||||||
|
:type num_processes: int
|
||||||
|
:param ext_scoring_func: External scoring function for
|
||||||
|
partially decoded sentence, e.g. word count
|
||||||
|
or language model.
|
||||||
|
:type external_scoring_function: callable
|
||||||
|
:return: List of tuples of log probability and sentence as decoding
|
||||||
|
results, in descending order of the probability.
|
||||||
|
:rtype: list
|
||||||
|
"""
|
||||||
|
probs_split = [probs_seq.tolist() for probs_seq in probs_split]
|
||||||
|
|
||||||
|
return swig_decoders.ctc_beam_search_decoder_batch(
|
||||||
|
probs_split, vocabulary, beam_size, num_processes, cutoff_prob,
|
||||||
|
cutoff_top_n, ext_scoring_func)
|
After Width: | Height: | Size: 153 KiB |
Loading…
Reference in new issue