|
|
@ -86,8 +86,8 @@ class CTCPrefixBeamSearch:
|
|
|
|
# 2. viterbi_blank ending,
|
|
|
|
# 2. viterbi_blank ending,
|
|
|
|
# 3. viterbi_non_blank,
|
|
|
|
# 3. viterbi_non_blank,
|
|
|
|
# 4. current_token_prob,
|
|
|
|
# 4. current_token_prob,
|
|
|
|
# 5. times_viterbi_blank,
|
|
|
|
# 5. times_viterbi_blank, times_b
|
|
|
|
# 6. times_titerbi_non_blank
|
|
|
|
# 6. times_titerbi_non_blank, times_nb
|
|
|
|
if self.cur_hyps is None:
|
|
|
|
if self.cur_hyps is None:
|
|
|
|
self.cur_hyps = [(tuple(), (0.0, -float('inf'), 0.0, 0.0,
|
|
|
|
self.cur_hyps = [(tuple(), (0.0, -float('inf'), 0.0, 0.0,
|
|
|
|
-float('inf'), [], []))]
|
|
|
|
-float('inf'), [], []))]
|
|
|
@ -106,69 +106,69 @@ class CTCPrefixBeamSearch:
|
|
|
|
for s in top_k_index:
|
|
|
|
for s in top_k_index:
|
|
|
|
s = s.item()
|
|
|
|
s = s.item()
|
|
|
|
ps = logp[s].item()
|
|
|
|
ps = logp[s].item()
|
|
|
|
for prefix, (pb, pnb, v_b_s, v_nb_s, cur_token_prob, times_s,
|
|
|
|
for prefix, (pb, pnb, v_b_s, v_nb_s, cur_token_prob, times_b,
|
|
|
|
times_ns) in self.cur_hyps:
|
|
|
|
times_nb) in self.cur_hyps:
|
|
|
|
last = prefix[-1] if len(prefix) > 0 else None
|
|
|
|
last = prefix[-1] if len(prefix) > 0 else None
|
|
|
|
if s == blank_id: # blank
|
|
|
|
if s == blank_id: # blank
|
|
|
|
n_pb, n_pnb, n_v_s, n_v_ns, n_cur_token_prob, n_times_s, n_times_ns = next_hyps[
|
|
|
|
n_pb, n_pnb, n_v_s, n_v_ns, n_cur_token_prob, n_times_b, n_times_nb = next_hyps[
|
|
|
|
prefix]
|
|
|
|
prefix]
|
|
|
|
n_pb = log_add([n_pb, pb + ps, pnb + ps])
|
|
|
|
n_pb = log_add([n_pb, pb + ps, pnb + ps])
|
|
|
|
|
|
|
|
|
|
|
|
pre_times = times_s if v_b_s > v_nb_s else times_ns
|
|
|
|
pre_times = times_b if v_b_s > v_nb_s else times_nb
|
|
|
|
n_times_s = copy.deepcopy(pre_times)
|
|
|
|
n_times_b = copy.deepcopy(pre_times)
|
|
|
|
viterbi_score = v_b_s if v_b_s > v_nb_s else v_nb_s
|
|
|
|
viterbi_score = v_b_s if v_b_s > v_nb_s else v_nb_s
|
|
|
|
n_v_s = viterbi_score + ps
|
|
|
|
n_v_s = viterbi_score + ps
|
|
|
|
next_hyps[prefix] = (n_pb, n_pnb, n_v_s, n_v_ns,
|
|
|
|
next_hyps[prefix] = (n_pb, n_pnb, n_v_s, n_v_ns,
|
|
|
|
n_cur_token_prob, n_times_s,
|
|
|
|
n_cur_token_prob, n_times_b,
|
|
|
|
n_times_ns)
|
|
|
|
n_times_nb)
|
|
|
|
elif s == last:
|
|
|
|
elif s == last:
|
|
|
|
# Update *ss -> *s;
|
|
|
|
# Update *ss -> *s;
|
|
|
|
# case1: *a + a => *a
|
|
|
|
# case1: *a + a => *a
|
|
|
|
n_pb, n_pnb, n_v_s, n_v_ns, n_cur_token_prob, n_times_s, n_times_ns = next_hyps[
|
|
|
|
n_pb, n_pnb, n_v_s, n_v_ns, n_cur_token_prob, n_times_b, n_times_nb = next_hyps[
|
|
|
|
prefix]
|
|
|
|
prefix]
|
|
|
|
n_pnb = log_add([n_pnb, pnb + ps])
|
|
|
|
n_pnb = log_add([n_pnb, pnb + ps])
|
|
|
|
if n_v_ns < v_nb_s + ps:
|
|
|
|
if n_v_ns < v_nb_s + ps:
|
|
|
|
n_v_ns = v_nb_s + ps
|
|
|
|
n_v_ns = v_nb_s + ps
|
|
|
|
if n_cur_token_prob < ps:
|
|
|
|
if n_cur_token_prob < ps:
|
|
|
|
n_cur_token_prob = ps
|
|
|
|
n_cur_token_prob = ps
|
|
|
|
n_times_ns = copy.deepcopy(times_ns)
|
|
|
|
n_times_nb = copy.deepcopy(times_nb)
|
|
|
|
n_times_ns[
|
|
|
|
n_times_nb[
|
|
|
|
-1] = self.abs_time_step # 注意,这里要重新使用绝对时间
|
|
|
|
-1] = self.abs_time_step # 注意,这里要重新使用绝对时间
|
|
|
|
next_hyps[prefix] = (n_pb, n_pnb, n_v_s, n_v_ns,
|
|
|
|
next_hyps[prefix] = (n_pb, n_pnb, n_v_s, n_v_ns,
|
|
|
|
n_cur_token_prob, n_times_s,
|
|
|
|
n_cur_token_prob, n_times_b,
|
|
|
|
n_times_ns)
|
|
|
|
n_times_nb)
|
|
|
|
|
|
|
|
|
|
|
|
# Update *s-s -> *ss, - is for blank
|
|
|
|
# Update *s-s -> *ss, - is for blank
|
|
|
|
# Case 2: *aε + a => *aa
|
|
|
|
# Case 2: *aε + a => *aa
|
|
|
|
n_prefix = prefix + (s, )
|
|
|
|
n_prefix = prefix + (s, )
|
|
|
|
n_pb, n_pnb, n_v_s, n_v_ns, n_cur_token_prob, n_times_s, n_times_ns = next_hyps[
|
|
|
|
n_pb, n_pnb, n_v_s, n_v_ns, n_cur_token_prob, n_times_b, n_times_nb = next_hyps[
|
|
|
|
n_prefix]
|
|
|
|
n_prefix]
|
|
|
|
if n_v_ns < v_b_s + ps:
|
|
|
|
if n_v_ns < v_b_s + ps:
|
|
|
|
n_v_ns = v_b_s + ps
|
|
|
|
n_v_ns = v_b_s + ps
|
|
|
|
n_cur_token_prob = ps
|
|
|
|
n_cur_token_prob = ps
|
|
|
|
n_times_ns = copy.deepcopy(times_s)
|
|
|
|
n_times_nb = copy.deepcopy(times_b)
|
|
|
|
n_times_ns.append(self.abs_time_step)
|
|
|
|
n_times_nb.append(self.abs_time_step)
|
|
|
|
n_pnb = log_add([n_pnb, pb + ps])
|
|
|
|
n_pnb = log_add([n_pnb, pb + ps])
|
|
|
|
next_hyps[n_prefix] = (n_pb, n_pnb, n_v_s, n_v_ns,
|
|
|
|
next_hyps[n_prefix] = (n_pb, n_pnb, n_v_s, n_v_ns,
|
|
|
|
n_cur_token_prob, n_times_s,
|
|
|
|
n_cur_token_prob, n_times_b,
|
|
|
|
n_times_ns)
|
|
|
|
n_times_nb)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
# Case 3: *a + b => *ab, *aε + b => *ab
|
|
|
|
# Case 3: *a + b => *ab, *aε + b => *ab
|
|
|
|
n_prefix = prefix + (s, )
|
|
|
|
n_prefix = prefix + (s, )
|
|
|
|
n_pb, n_pnb, n_v_s, n_v_ns, n_cur_token_prob, n_times_s, n_times_ns = next_hyps[
|
|
|
|
n_pb, n_pnb, n_v_s, n_v_ns, n_cur_token_prob, n_times_b, n_times_nb = next_hyps[
|
|
|
|
n_prefix]
|
|
|
|
n_prefix]
|
|
|
|
viterbi_score = v_b_s if v_b_s > v_nb_s else v_nb_s
|
|
|
|
viterbi_score = v_b_s if v_b_s > v_nb_s else v_nb_s
|
|
|
|
pre_times = times_s if v_b_s > v_nb_s else times_ns
|
|
|
|
pre_times = times_b if v_b_s > v_nb_s else times_nb
|
|
|
|
if n_v_ns < viterbi_score + ps:
|
|
|
|
if n_v_ns < viterbi_score + ps:
|
|
|
|
n_v_ns = viterbi_score + ps
|
|
|
|
n_v_ns = viterbi_score + ps
|
|
|
|
n_cur_token_prob = ps
|
|
|
|
n_cur_token_prob = ps
|
|
|
|
n_times_ns = copy.deepcopy(pre_times)
|
|
|
|
n_times_nb = copy.deepcopy(pre_times)
|
|
|
|
n_times_ns.append(self.abs_time_step)
|
|
|
|
n_times_nb.append(self.abs_time_step)
|
|
|
|
|
|
|
|
|
|
|
|
n_pnb = log_add([n_pnb, pb + ps, pnb + ps])
|
|
|
|
n_pnb = log_add([n_pnb, pb + ps, pnb + ps])
|
|
|
|
next_hyps[n_prefix] = (n_pb, n_pnb, n_v_s, n_v_ns,
|
|
|
|
next_hyps[n_prefix] = (n_pb, n_pnb, n_v_s, n_v_ns,
|
|
|
|
n_cur_token_prob, n_times_s,
|
|
|
|
n_cur_token_prob, n_times_b,
|
|
|
|
n_times_ns)
|
|
|
|
n_times_nb)
|
|
|
|
|
|
|
|
|
|
|
|
# 2.2 Second beam prune
|
|
|
|
# 2.2 Second beam prune
|
|
|
|
next_hyps = sorted(
|
|
|
|
next_hyps = sorted(
|
|
|
|