parent
7d0458c7f7
commit
f3f5dad80c
@ -1,238 +0,0 @@
|
|||||||
"""Deployment for DeepSpeech2 model."""
|
|
||||||
from __future__ import absolute_import
|
|
||||||
from __future__ import division
|
|
||||||
from __future__ import print_function
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import gzip
|
|
||||||
import distutils.util
|
|
||||||
import multiprocessing
|
|
||||||
import paddle.v2 as paddle
|
|
||||||
from data_utils.data import DataGenerator
|
|
||||||
from layer import deep_speech2
|
|
||||||
from deploy.swig_decoders_wrapper import *
|
|
||||||
from error_rate import wer
|
|
||||||
import utils
|
|
||||||
import time
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description=__doc__)
|
|
||||||
parser.add_argument(
|
|
||||||
"--num_samples",
|
|
||||||
default=10,
|
|
||||||
type=int,
|
|
||||||
help="Number of samples for inference. (default: %(default)s)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--num_conv_layers",
|
|
||||||
default=2,
|
|
||||||
type=int,
|
|
||||||
help="Convolution layer number. (default: %(default)s)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--num_rnn_layers",
|
|
||||||
default=3,
|
|
||||||
type=int,
|
|
||||||
help="RNN layer number. (default: %(default)s)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--rnn_layer_size",
|
|
||||||
default=512,
|
|
||||||
type=int,
|
|
||||||
help="RNN layer cell number. (default: %(default)s)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--use_gpu",
|
|
||||||
default=True,
|
|
||||||
type=distutils.util.strtobool,
|
|
||||||
help="Use gpu or not. (default: %(default)s)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--num_threads_data",
|
|
||||||
default=multiprocessing.cpu_count(),
|
|
||||||
type=int,
|
|
||||||
help="Number of cpu threads for preprocessing data. (default: %(default)s)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--num_processes_beam_search",
|
|
||||||
default=multiprocessing.cpu_count(),
|
|
||||||
type=int,
|
|
||||||
help="Number of cpu processes for beam search. (default: %(default)s)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--mean_std_filepath",
|
|
||||||
default='mean_std.npz',
|
|
||||||
type=str,
|
|
||||||
help="Manifest path for normalizer. (default: %(default)s)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--decode_manifest_path",
|
|
||||||
default='datasets/manifest.test',
|
|
||||||
type=str,
|
|
||||||
help="Manifest path for decoding. (default: %(default)s)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--model_filepath",
|
|
||||||
default='checkpoints/params.latest.tar.gz',
|
|
||||||
type=str,
|
|
||||||
help="Model filepath. (default: %(default)s)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--vocab_filepath",
|
|
||||||
default='datasets/vocab/eng_vocab.txt',
|
|
||||||
type=str,
|
|
||||||
help="Vocabulary filepath. (default: %(default)s)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--decode_method",
|
|
||||||
default='beam_search',
|
|
||||||
type=str,
|
|
||||||
help="Method for ctc decoding: beam_search or beam_search_batch. "
|
|
||||||
"(default: %(default)s)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--beam_size",
|
|
||||||
default=500,
|
|
||||||
type=int,
|
|
||||||
help="Width for beam search decoding. (default: %(default)d)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--num_results_per_sample",
|
|
||||||
default=1,
|
|
||||||
type=int,
|
|
||||||
help="Number of output per sample in beam search. (default: %(default)d)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--language_model_path",
|
|
||||||
default="lm/data/common_crawl_00.prune01111.trie.klm",
|
|
||||||
type=str,
|
|
||||||
help="Path for language model. (default: %(default)s)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--alpha",
|
|
||||||
default=1.5,
|
|
||||||
type=float,
|
|
||||||
help="Parameter associated with language model. (default: %(default)f)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--beta",
|
|
||||||
default=0.3,
|
|
||||||
type=float,
|
|
||||||
help="Parameter associated with word count. (default: %(default)f)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--cutoff_prob",
|
|
||||||
default=1.0,
|
|
||||||
type=float,
|
|
||||||
help="The cutoff probability of pruning"
|
|
||||||
"in beam search. (default: %(default)f)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--cutoff_top_n",
|
|
||||||
default=40,
|
|
||||||
type=int,
|
|
||||||
help="The cutoff number of pruning"
|
|
||||||
"in beam search. (default: %(default)f)")
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def infer():
|
|
||||||
"""Deployment for DeepSpeech2."""
|
|
||||||
# initialize data generator
|
|
||||||
data_generator = DataGenerator(
|
|
||||||
vocab_filepath=args.vocab_filepath,
|
|
||||||
mean_std_filepath=args.mean_std_filepath,
|
|
||||||
augmentation_config='{}',
|
|
||||||
num_threads=args.num_threads_data)
|
|
||||||
|
|
||||||
# create network config
|
|
||||||
# paddle.data_type.dense_array is used for variable batch input.
|
|
||||||
# The size 161 * 161 is only an placeholder value and the real shape
|
|
||||||
# of input batch data will be induced during training.
|
|
||||||
audio_data = paddle.layer.data(
|
|
||||||
name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
|
|
||||||
text_data = paddle.layer.data(
|
|
||||||
name="transcript_text",
|
|
||||||
type=paddle.data_type.integer_value_sequence(data_generator.vocab_size))
|
|
||||||
output_probs, _ = deep_speech2(
|
|
||||||
audio_data=audio_data,
|
|
||||||
text_data=text_data,
|
|
||||||
dict_size=data_generator.vocab_size,
|
|
||||||
num_conv_layers=args.num_conv_layers,
|
|
||||||
num_rnn_layers=args.num_rnn_layers,
|
|
||||||
rnn_size=args.rnn_layer_size)
|
|
||||||
|
|
||||||
# load parameters
|
|
||||||
parameters = paddle.parameters.Parameters.from_tar(
|
|
||||||
gzip.open(args.model_filepath))
|
|
||||||
|
|
||||||
# prepare infer data
|
|
||||||
batch_reader = data_generator.batch_reader_creator(
|
|
||||||
manifest_path=args.decode_manifest_path,
|
|
||||||
batch_size=args.num_samples,
|
|
||||||
min_batch_size=1,
|
|
||||||
sortagrad=False,
|
|
||||||
shuffle_method=None)
|
|
||||||
infer_data = batch_reader().next()
|
|
||||||
|
|
||||||
# run inference
|
|
||||||
inferer = paddle.inference.Inference(
|
|
||||||
output_layer=output_probs, parameters=parameters)
|
|
||||||
infer_results = inferer.infer(input=infer_data)
|
|
||||||
|
|
||||||
num_steps = len(infer_results) // len(infer_data)
|
|
||||||
probs_split = [
|
|
||||||
infer_results[i * num_steps:(i + 1) * num_steps]
|
|
||||||
for i in xrange(len(infer_data))
|
|
||||||
]
|
|
||||||
|
|
||||||
# targe transcription
|
|
||||||
target_transcription = [
|
|
||||||
''.join(
|
|
||||||
[data_generator.vocab_list[index] for index in infer_data[i][1]])
|
|
||||||
for i, probs in enumerate(probs_split)
|
|
||||||
]
|
|
||||||
|
|
||||||
# external scorer
|
|
||||||
ext_scorer = Scorer(
|
|
||||||
alpha=args.alpha, beta=args.beta, model_path=args.language_model_path)
|
|
||||||
|
|
||||||
# from unicode to string
|
|
||||||
vocab_list = [chars.encode("utf-8") for chars in data_generator.vocab_list]
|
|
||||||
|
|
||||||
# The below two steps, i.e. setting char map and filling dictionary of
|
|
||||||
# FST will be completed implicitly when ext_scorer first used.But to save
|
|
||||||
# the time of decoding the first audio sample, they are done in advance.
|
|
||||||
ext_scorer.set_char_map(vocab_list)
|
|
||||||
# only for ward based language model
|
|
||||||
ext_scorer.fill_dictionary(True)
|
|
||||||
|
|
||||||
# for word error rate metric
|
|
||||||
wer_sum, wer_counter = 0.0, 0
|
|
||||||
|
|
||||||
## decode and print
|
|
||||||
time_begin = time.time()
|
|
||||||
batch_beam_results = []
|
|
||||||
if args.decode_method == 'beam_search':
|
|
||||||
for i, probs in enumerate(probs_split):
|
|
||||||
beam_result = ctc_beam_search_decoder(
|
|
||||||
probs_seq=probs,
|
|
||||||
beam_size=args.beam_size,
|
|
||||||
vocabulary=vocab_list,
|
|
||||||
blank_id=len(vocab_list),
|
|
||||||
cutoff_prob=args.cutoff_prob,
|
|
||||||
cutoff_top_n=args.cutoff_top_n,
|
|
||||||
ext_scoring_func=ext_scorer, )
|
|
||||||
batch_beam_results += [beam_result]
|
|
||||||
else:
|
|
||||||
batch_beam_results = ctc_beam_search_decoder_batch(
|
|
||||||
probs_split=probs_split,
|
|
||||||
beam_size=args.beam_size,
|
|
||||||
vocabulary=vocab_list,
|
|
||||||
blank_id=len(vocab_list),
|
|
||||||
num_processes=args.num_processes_beam_search,
|
|
||||||
cutoff_prob=args.cutoff_prob,
|
|
||||||
cutoff_top_n=args.cutoff_top_n,
|
|
||||||
ext_scoring_func=ext_scorer, )
|
|
||||||
|
|
||||||
for i, beam_result in enumerate(batch_beam_results):
|
|
||||||
print("\nTarget Transcription:\t%s" % target_transcription[i])
|
|
||||||
print("Beam %d: %f \t%s" % (0, beam_result[0][0], beam_result[0][1]))
|
|
||||||
wer_cur = wer(target_transcription[i], beam_result[0][1])
|
|
||||||
wer_sum += wer_cur
|
|
||||||
wer_counter += 1
|
|
||||||
print("cur wer = %f , average wer = %f" %
|
|
||||||
(wer_cur, wer_sum / wer_counter))
|
|
||||||
|
|
||||||
print("time for decoding = %f" % (time.time() - time_begin))
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
utils.print_arguments(args)
|
|
||||||
paddle.init(use_gpu=args.use_gpu, trainer_count=1)
|
|
||||||
infer()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
@ -1,57 +0,0 @@
|
|||||||
|
|
||||||
The decoders for deployment developed in C++ are a better alternative for the prototype decoders in Pytthon, with more powerful performance in both speed and accuracy.
|
|
||||||
|
|
||||||
### Installation
|
|
||||||
|
|
||||||
The build depends on several open-sourced projects, first clone or download them to current directory (i.e., `deep_speech_2/deploy`)
|
|
||||||
|
|
||||||
- [**KenLM**](https://github.com/kpu/kenlm/): Faster and Smaller Language Model Queries
|
|
||||||
|
|
||||||
```shell
|
|
||||||
git clone https://github.com/kpu/kenlm.git
|
|
||||||
```
|
|
||||||
|
|
||||||
- [**OpenFst**](http://www.openfst.org/twiki/bin/view/FST/WebHome): A library for finite-state transducers
|
|
||||||
|
|
||||||
```shell
|
|
||||||
wget http://www.openfst.org/twiki/pub/FST/FstDownload/openfst-1.6.3.tar.gz
|
|
||||||
tar -xzvf openfst-1.6.3.tar.gz
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
- [**ThreadPool**](http://progsch.net/wordpress/): A library for C++ thread pool
|
|
||||||
|
|
||||||
```shell
|
|
||||||
git clone https://github.com/progschj/ThreadPool.git
|
|
||||||
```
|
|
||||||
|
|
||||||
- [**SWIG**](http://www.swig.org): A tool that provides the Python interface for the decoders, please make sure it being installed.
|
|
||||||
|
|
||||||
Then run the setup
|
|
||||||
|
|
||||||
```shell
|
|
||||||
python setup.py install --num_processes 4
|
|
||||||
cd ..
|
|
||||||
```
|
|
||||||
|
|
||||||
### Usage
|
|
||||||
|
|
||||||
The decoders for deployment share almost the same interface with the prototye decoders in Python. After the installation succeeds, these decoders are very convenient for call in Python, and a complete example in ```deploy.py``` can be refered.
|
|
||||||
|
|
||||||
For GPU deployment
|
|
||||||
|
|
||||||
```
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python deploy.py
|
|
||||||
```
|
|
||||||
|
|
||||||
For CPU deployment
|
|
||||||
|
|
||||||
```
|
|
||||||
python deploy.py --use_gpu=False
|
|
||||||
```
|
|
||||||
|
|
||||||
More help for arguments
|
|
||||||
|
|
||||||
```
|
|
||||||
python deploy.py --help
|
|
||||||
```
|
|
@ -0,0 +1,21 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
if [ ! -d kenlm ]; then
|
||||||
|
git clone https://github.com/luotao1/kenlm.git
|
||||||
|
echo -e "\n"
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -d openfst-1.6.3 ]; then
|
||||||
|
echo "Download and extract openfst ..."
|
||||||
|
wget http://www.openfst.org/twiki/pub/FST/FstDownload/openfst-1.6.3.tar.gz
|
||||||
|
tar -xzvf openfst-1.6.3.tar.gz
|
||||||
|
echo -e "\n"
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -d ThreadPool ]; then
|
||||||
|
git clone https://github.com/progschj/ThreadPool.git
|
||||||
|
echo -e "\n"
|
||||||
|
fi
|
||||||
|
|
||||||
|
echo "Install decoders ..."
|
||||||
|
python setup.py install --num_processes 4
|
Loading…
Reference in new issue