rm ds2 && rm boost

pull/2786/head
YangZhou 3 years ago
parent 0547d7961e
commit f37f34d3ce

@ -57,13 +57,13 @@ repos:
entry: bash .pre-commit-hooks/clang-format.hook -i entry: bash .pre-commit-hooks/clang-format.hook -i
language: system language: system
files: \.(h\+\+|h|hh|hxx|hpp|cuh|c|cc|cpp|cu|c\+\+|cxx|tpp|txx)$ files: \.(h\+\+|h|hh|hxx|hpp|cuh|c|cc|cpp|cu|c\+\+|cxx|tpp|txx)$
exclude: (?=speechx/speechx/kaldi|audio/paddleaudio/src|speechx/patch|speechx/tools/fstbin|speechx/tools/lmbin|third_party/ctc_decoders).*(\.cpp|\.cc|\.h|\.hpp|\.py)$ exclude: (?=speechx/speechx/kaldi|audio/paddleaudio/src|speechx/patch|speechx/tools/fstbin|speechx/tools/lmbin|third_party/ctc_decoders|speechx/speechx/common/utils).*(\.cpp|\.cc|\.h|\.hpp|\.py)$
- id: cpplint - id: cpplint
name: cpplint name: cpplint
description: Static code analysis of C/C++ files description: Static code analysis of C/C++ files
language: python language: python
files: \.(h\+\+|h|hh|hxx|hpp|cuh|c|cc|cpp|cu|c\+\+|cxx|tpp|txx)$ files: \.(h\+\+|h|hh|hxx|hpp|cuh|c|cc|cpp|cu|c\+\+|cxx|tpp|txx)$
exclude: (?=speechx/speechx/kaldi|audio/paddleaudio/src|speechx/patch|speechx/tools/fstbin|speechx/tools/lmbin|third_party/ctc_decoders).*(\.cpp|\.cc|\.h|\.hpp|\.py)$ exclude: (?=speechx/speechx/kaldi|audio/paddleaudio/src|speechx/patch|speechx/tools/fstbin|speechx/tools/lmbin|third_party/ctc_decoders|speechx/speechx/common/utils).*(\.cpp|\.cc|\.h|\.hpp|\.py)$
entry: cpplint --filter=-build,-whitespace,+whitespace/comma,-whitespace/indent entry: cpplint --filter=-build,-whitespace,+whitespace/comma,-whitespace/indent
- repo: https://github.com/asottile/reorder_python_imports - repo: https://github.com/asottile/reorder_python_imports
rev: v2.4.0 rev: v2.4.0

@ -44,9 +44,6 @@ option(TEST_DEBUG "option for debug" OFF)
option(USE_PROFILING "enable c++ profling" OFF) option(USE_PROFILING "enable c++ profling" OFF)
option(WITH_TESTING "unit test" ON) option(WITH_TESTING "unit test" ON)
option(USING_U2 "compile u2 model." ON)
option(USING_DS2 "compile with ds2 model." OFF)
option(USING_GPU "u2 compute on GPU." OFF) option(USING_GPU "u2 compute on GPU." OFF)
############################################################################### ###############################################################################
@ -56,21 +53,6 @@ include(gflags)
include(glog) include(glog)
# boost
# include(boost) # not work
set(boost_SOURCE_DIR ${fc_patch}/boost-src)
set(BOOST_ROOT ${boost_SOURCE_DIR})
include_directories(${boost_SOURCE_DIR})
link_directories(${boost_SOURCE_DIR}/stage/lib)
# Eigen
include(eigen)
find_package(Eigen3 REQUIRED)
# Kenlm
include(kenlm)
add_dependencies(kenlm eigen boost)
#openblas #openblas
include(openblas) include(openblas)

@ -4,20 +4,5 @@ set -xe
# the build script had verified in the paddlepaddle docker image. # the build script had verified in the paddlepaddle docker image.
# please follow the instruction below to install PaddlePaddle image. # please follow the instruction below to install PaddlePaddle image.
# https://www.paddlepaddle.org.cn/documentation/docs/zh/install/docker/linux-docker.html # https://www.paddlepaddle.org.cn/documentation/docs/zh/install/docker/linux-docker.html
boost_SOURCE_DIR=$PWD/fc_patch/boost-src cmake -B build
if [ ! -d ${boost_SOURCE_DIR} ]; then wget -c https://boostorg.jfrog.io/artifactory/main/release/1.75.0/source/boost_1_75_0.tar.gz
tar xzfv boost_1_75_0.tar.gz
mkdir -p $PWD/fc_patch
mv boost_1_75_0 ${boost_SOURCE_DIR}
cd ${boost_SOURCE_DIR}
bash ./bootstrap.sh
./b2
cd -
echo -e "\n"
fi
#rm -rf build
mkdir -p build
cmake -B build -DBOOST_ROOT:STRING=${boost_SOURCE_DIR}
cmake --build build -j cmake --build build -j

@ -3,7 +3,7 @@
unset GREP_OPTIONS unset GREP_OPTIONS
SPEECHX_ROOT=$PWD/../../../ SPEECHX_ROOT=$PWD/../../../
SPEECHX_BUILD=$SPEECHX_ROOT/build/speechx SPEECHX_BUILD=$SPEECHX_ROOT/build/speechx/asr
SPEECHX_TOOLS=$SPEECHX_ROOT/tools SPEECHX_TOOLS=$SPEECHX_ROOT/tools
TOOLS_BIN=$SPEECHX_TOOLS/valgrind/install/bin TOOLS_BIN=$SPEECHX_TOOLS/valgrind/install/bin
@ -12,7 +12,7 @@ TOOLS_BIN=$SPEECHX_TOOLS/valgrind/install/bin
export LC_AL=C export LC_AL=C
export PATH=$PATH:$TOOLS_BIN:$SPEECHX_BUILD/nnet:$SPEECHX_BUILD/decoder:$SPEECHX_BUILD/frontend/audio:$SPEECHX_BUILD/recognizer export PATH=$PATH:$TOOLS_BIN:$SPEECHX_BUILD/nnet:$SPEECHX_BUILD/decoder:$SPEECHX_BUILD/../common/frontend/audio:$SPEECHX_BUILD/recognizer
PADDLE_LIB_PATH=$(python -c "import os; import paddle; include_dir=paddle.sysconfig.get_include(); paddle_dir=os.path.split(include_dir)[0]; libs_dir=os.path.join(paddle_dir, 'libs'); fluid_dir=os.path.join(paddle_dir, 'fluid'); out=':'.join([libs_dir, fluid_dir]); print(out);") PADDLE_LIB_PATH=$(python -c "import os; import paddle; include_dir=paddle.sysconfig.get_include(); paddle_dir=os.path.split(include_dir)[0]; libs_dir=os.path.join(paddle_dir, 'libs'); fluid_dir=os.path.join(paddle_dir, 'fluid'); out=':'.join([libs_dir, fluid_dir]); print(out);")
export LD_LIBRARY_PATH=$PADDLE_LIB_PATH:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=$PADDLE_LIB_PATH:$LD_LIBRARY_PATH

@ -1,55 +1,22 @@
include_directories(${CMAKE_CURRENT_SOURCE_DIR/ctc_decoders})
set(srcs) set(srcs)
if (USING_DS2)
list(APPEND srcs list(APPEND srcs
ctc_decoders/decoder_utils.cpp ctc_prefix_beam_search_decoder.cc
ctc_decoders/path_trie.cpp
ctc_decoders/scorer.cpp
ctc_beam_search_decoder.cc
ctc_tlg_decoder.cc
) )
endif()
if (USING_U2)
list(APPEND srcs
ctc_prefix_beam_search_decoder.cc
)
endif()
add_library(decoder STATIC ${srcs}) add_library(decoder STATIC ${srcs})
target_link_libraries(decoder PUBLIC kenlm utils fst frontend nnet kaldi-decoder) target_link_libraries(decoder PUBLIC utils fst frontend nnet kaldi-decoder)
# test # test
if (USING_DS2) set(TEST_BINS
set(BINS ctc_prefix_beam_search_decoder_main
ctc_beam_search_decoder_main )
nnet_logprob_decoder_main
ctc_tlg_decoder_main
)
foreach(bin_name IN LISTS BINS)
add_executable(${bin_name} ${CMAKE_CURRENT_SOURCE_DIR}/${bin_name}.cc)
target_include_directories(${bin_name} PRIVATE ${SPEECHX_ROOT} ${SPEECHX_ROOT}/kaldi)
target_link_libraries(${bin_name} PUBLIC nnet decoder fst utils gflags glog kaldi-base kaldi-matrix kaldi-util ${DEPS})
endforeach()
endif()
if (USING_U2)
set(TEST_BINS
ctc_prefix_beam_search_decoder_main
)
foreach(bin_name IN LISTS TEST_BINS)
add_executable(${bin_name} ${CMAKE_CURRENT_SOURCE_DIR}/${bin_name}.cc)
target_include_directories(${bin_name} PRIVATE ${SPEECHX_ROOT} ${SPEECHX_ROOT}/kaldi)
target_link_libraries(${bin_name} nnet decoder fst utils gflags glog kaldi-base kaldi-matrix kaldi-util)
target_compile_options(${bin_name} PRIVATE ${PADDLE_COMPILE_FLAGS})
target_include_directories(${bin_name} PRIVATE ${pybind11_INCLUDE_DIRS} ${PROJECT_SOURCE_DIR})
target_link_libraries(${bin_name} ${PYTHON_LIBRARIES} ${PADDLE_LINK_FLAGS})
endforeach()
endif() foreach(bin_name IN LISTS TEST_BINS)
add_executable(${bin_name} ${CMAKE_CURRENT_SOURCE_DIR}/${bin_name}.cc)
target_include_directories(${bin_name} PRIVATE ${SPEECHX_ROOT} ${SPEECHX_ROOT}/kaldi)
target_link_libraries(${bin_name} nnet decoder fst utils gflags glog kaldi-base kaldi-matrix kaldi-util)
target_compile_options(${bin_name} PRIVATE ${PADDLE_COMPILE_FLAGS})
target_include_directories(${bin_name} PRIVATE ${pybind11_INCLUDE_DIRS} ${PROJECT_SOURCE_DIR})
target_link_libraries(${bin_name} ${PYTHON_LIBRARIES} ${PADDLE_LINK_FLAGS})
endforeach()

@ -1,313 +0,0 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "decoder/ctc_beam_search_decoder.h"
#include "base/common.h"
#include "decoder/ctc_decoders/decoder_utils.h"
#include "utils/file_utils.h"
namespace ppspeech {
using std::vector;
using FSTMATCH = fst::SortedMatcher<fst::StdVectorFst>;
CTCBeamSearch::CTCBeamSearch(const CTCBeamSearchOptions& opts)
: opts_(opts), init_ext_scorer_(nullptr), space_id_(-1), root_(nullptr) {
LOG(INFO) << "dict path: " << opts_.dict_file;
if (!ReadFileToVector(opts_.dict_file, &vocabulary_)) {
LOG(INFO) << "load the dict failed";
}
LOG(INFO) << "read the vocabulary success, dict size: "
<< vocabulary_.size();
LOG(INFO) << "language model path: " << opts_.lm_path;
if (opts_.lm_path != "") {
init_ext_scorer_ = std::make_shared<Scorer>(
opts_.alpha, opts_.beta, opts_.lm_path, vocabulary_);
}
CHECK_EQ(opts_.blank, 0);
auto it = std::find(vocabulary_.begin(), vocabulary_.end(), " ");
space_id_ = it - vocabulary_.begin();
// if no space in vocabulary
if (static_cast<size_t>(space_id_) >= vocabulary_.size()) {
space_id_ = -2;
}
}
void CTCBeamSearch::Reset() {
// num_frame_decoded_ = 0;
// ResetPrefixes();
InitDecoder();
}
void CTCBeamSearch::InitDecoder() {
num_frame_decoded_ = 0;
// ResetPrefixes();
prefixes_.clear();
root_ = std::make_shared<PathTrie>();
root_->score = root_->log_prob_b_prev = 0.0;
prefixes_.push_back(root_.get());
if (init_ext_scorer_ != nullptr &&
!init_ext_scorer_->is_character_based()) {
auto fst_dict =
static_cast<fst::StdVectorFst*>(init_ext_scorer_->dictionary);
fst::StdVectorFst* dict_ptr = fst_dict->Copy(true);
root_->set_dictionary(dict_ptr);
auto matcher = std::make_shared<FSTMATCH>(*dict_ptr, fst::MATCH_INPUT);
root_->set_matcher(matcher);
}
}
void CTCBeamSearch::Decode(
std::shared_ptr<kaldi::DecodableInterface> decodable) {
return;
}
// todo rename, refactor
void CTCBeamSearch::AdvanceDecode(
const std::shared_ptr<kaldi::DecodableInterface>& decodable) {
while (1) {
vector<vector<BaseFloat>> likelihood;
vector<BaseFloat> frame_prob;
bool flag = decodable->FrameLikelihood(num_frame_decoded_, &frame_prob);
if (flag == false) break;
likelihood.push_back(frame_prob);
AdvanceDecoding(likelihood);
}
}
void CTCBeamSearch::ResetPrefixes() {
for (size_t i = 0; i < prefixes_.size(); i++) {
if (prefixes_[i] != nullptr) {
delete prefixes_[i];
prefixes_[i] = nullptr;
}
}
prefixes_.clear();
}
int CTCBeamSearch::DecodeLikelihoods(const vector<vector<float>>& probs,
const vector<string>& nbest_words) {
kaldi::Timer timer;
AdvanceDecoding(probs);
LOG(INFO) << "ctc decoding elapsed time(s) "
<< static_cast<float>(timer.Elapsed()) / 1000.0f;
return 0;
}
vector<std::pair<double, string>> CTCBeamSearch::GetNBestPath(int n) {
int beam_size = n == -1 ? opts_.beam_size : std::min(n, opts_.beam_size);
return get_beam_search_result(prefixes_, vocabulary_, beam_size);
}
vector<std::pair<double, string>> CTCBeamSearch::GetNBestPath() {
return GetNBestPath(-1);
}
string CTCBeamSearch::GetBestPath() {
std::vector<std::pair<double, std::string>> result;
result = get_beam_search_result(prefixes_, vocabulary_, opts_.beam_size);
return result[0].second;
}
string CTCBeamSearch::GetFinalBestPath() {
CalculateApproxScore();
LMRescore();
return GetBestPath();
}
void CTCBeamSearch::AdvanceDecoding(const vector<vector<BaseFloat>>& probs) {
size_t num_time_steps = probs.size();
size_t beam_size = opts_.beam_size;
double cutoff_prob = opts_.cutoff_prob;
size_t cutoff_top_n = opts_.cutoff_top_n;
vector<vector<double>> probs_seq(probs.size(),
vector<double>(probs[0].size(), 0));
int row = probs.size();
int col = probs[0].size();
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
probs_seq[i][j] = static_cast<double>(probs[i][j]);
}
}
for (size_t time_step = 0; time_step < num_time_steps; time_step++) {
const auto& prob = probs_seq[time_step];
float min_cutoff = -NUM_FLT_INF;
bool full_beam = false;
if (init_ext_scorer_ != nullptr) {
size_t num_prefixes_ = std::min(prefixes_.size(), beam_size);
std::sort(prefixes_.begin(),
prefixes_.begin() + num_prefixes_,
prefix_compare);
if (num_prefixes_ == 0) {
continue;
}
min_cutoff = prefixes_[num_prefixes_ - 1]->score +
std::log(prob[opts_.blank]) -
std::max(0.0, init_ext_scorer_->beta);
full_beam = (num_prefixes_ == beam_size);
}
vector<std::pair<size_t, float>> log_prob_idx =
get_pruned_log_probs(prob, cutoff_prob, cutoff_top_n);
// loop over chars
size_t log_prob_idx_len = log_prob_idx.size();
for (size_t index = 0; index < log_prob_idx_len; index++) {
SearchOneChar(full_beam, log_prob_idx[index], min_cutoff);
}
prefixes_.clear();
// update log probs
root_->iterate_to_vec(prefixes_);
// only preserve top beam_size prefixes_
if (prefixes_.size() >= beam_size) {
std::nth_element(prefixes_.begin(),
prefixes_.begin() + beam_size,
prefixes_.end(),
prefix_compare);
for (size_t i = beam_size; i < prefixes_.size(); ++i) {
prefixes_[i]->remove();
}
} // end if
num_frame_decoded_++;
} // end for probs_seq
}
int32 CTCBeamSearch::SearchOneChar(
const bool& full_beam,
const std::pair<size_t, BaseFloat>& log_prob_idx,
const BaseFloat& min_cutoff) {
size_t beam_size = opts_.beam_size;
const auto& c = log_prob_idx.first;
const auto& log_prob_c = log_prob_idx.second;
size_t prefixes_len = std::min(prefixes_.size(), beam_size);
for (size_t i = 0; i < prefixes_len; ++i) {
auto prefix = prefixes_[i];
if (full_beam && log_prob_c + prefix->score < min_cutoff) {
break;
}
if (c == opts_.blank) {
prefix->log_prob_b_cur =
log_sum_exp(prefix->log_prob_b_cur, log_prob_c + prefix->score);
continue;
}
// repeated character
if (c == prefix->character) {
// p_{nb}(l;x_{1:t}) = p(c;x_{t})p(l;x_{1:t-1})
prefix->log_prob_nb_cur = log_sum_exp(
prefix->log_prob_nb_cur, log_prob_c + prefix->log_prob_nb_prev);
}
// get new prefix
auto prefix_new = prefix->get_path_trie(c);
if (prefix_new != nullptr) {
float log_p = -NUM_FLT_INF;
if (c == prefix->character &&
prefix->log_prob_b_prev > -NUM_FLT_INF) {
// p_{nb}(l^{+};x_{1:t}) = p(c;x_{t})p_{b}(l;x_{1:t-1})
log_p = log_prob_c + prefix->log_prob_b_prev;
} else if (c != prefix->character) {
// p_{nb}(l^{+};x_{1:t}) = p(c;x_{t}) p(l;x_{1:t-1})
log_p = log_prob_c + prefix->score;
}
// language model scoring
if (init_ext_scorer_ != nullptr &&
(c == space_id_ || init_ext_scorer_->is_character_based())) {
PathTrie* prefix_to_score = nullptr;
// skip scoring the space
if (init_ext_scorer_->is_character_based()) {
prefix_to_score = prefix_new;
} else {
prefix_to_score = prefix;
}
float score = 0.0;
vector<string> ngram;
ngram = init_ext_scorer_->make_ngram(prefix_to_score);
// lm score: p_{lm}(W)^{\alpha} + \beta
score = init_ext_scorer_->get_log_cond_prob(ngram) *
init_ext_scorer_->alpha;
log_p += score;
log_p += init_ext_scorer_->beta;
}
// p_{nb}(l;x_{1:t})
prefix_new->log_prob_nb_cur =
log_sum_exp(prefix_new->log_prob_nb_cur, log_p);
}
} // end of loop over prefix
return 0;
}
void CTCBeamSearch::CalculateApproxScore() {
size_t beam_size = opts_.beam_size;
size_t num_prefixes_ = std::min(prefixes_.size(), beam_size);
std::sort(
prefixes_.begin(), prefixes_.begin() + num_prefixes_, prefix_compare);
// compute aproximate ctc score as the return score, without affecting the
// return order of decoding result. To delete when decoder gets stable.
for (size_t i = 0; i < beam_size && i < prefixes_.size(); ++i) {
double approx_ctc = prefixes_[i]->score;
if (init_ext_scorer_ != nullptr) {
vector<int> output;
prefixes_[i]->get_path_vec(output);
auto prefix_length = output.size();
auto words = init_ext_scorer_->split_labels(output);
// remove word insert
approx_ctc = approx_ctc - prefix_length * init_ext_scorer_->beta;
// remove language model weight:
approx_ctc -= (init_ext_scorer_->get_sent_log_prob(words)) *
init_ext_scorer_->alpha;
}
prefixes_[i]->approx_ctc = approx_ctc;
}
}
void CTCBeamSearch::LMRescore() {
size_t beam_size = opts_.beam_size;
if (init_ext_scorer_ != nullptr &&
!init_ext_scorer_->is_character_based()) {
for (size_t i = 0; i < beam_size && i < prefixes_.size(); ++i) {
auto prefix = prefixes_[i];
if (!prefix->is_empty() && prefix->character != space_id_) {
float score = 0.0;
vector<string> ngram = init_ext_scorer_->make_ngram(prefix);
score = init_ext_scorer_->get_log_cond_prob(ngram) *
init_ext_scorer_->alpha;
score += init_ext_scorer_->beta;
prefix->score += score;
}
}
}
}
} // namespace ppspeech

@ -1,73 +0,0 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// used by deepspeech2
#pragma once
#include "decoder/ctc_beam_search_opt.h"
#include "decoder/ctc_decoders/path_trie.h"
#include "decoder/ctc_decoders/scorer.h"
#include "decoder/decoder_itf.h"
namespace ppspeech {
class CTCBeamSearch : public DecoderBase {
public:
explicit CTCBeamSearch(const CTCBeamSearchOptions& opts);
~CTCBeamSearch() {}
void InitDecoder();
void Reset();
void AdvanceDecode(
const std::shared_ptr<kaldi::DecodableInterface>& decodable);
void Decode(std::shared_ptr<kaldi::DecodableInterface> decodable);
std::string GetBestPath();
std::vector<std::pair<double, std::string>> GetNBestPath();
std::vector<std::pair<double, std::string>> GetNBestPath(int n);
std::string GetFinalBestPath();
std::string GetPartialResult() {
CHECK(false) << "Not implement.";
return {};
}
int DecodeLikelihoods(const std::vector<std::vector<BaseFloat>>& probs,
const std::vector<std::string>& nbest_words);
private:
void ResetPrefixes();
int32 SearchOneChar(const bool& full_beam,
const std::pair<size_t, BaseFloat>& log_prob_idx,
const BaseFloat& min_cutoff);
void CalculateApproxScore();
void LMRescore();
void AdvanceDecoding(const std::vector<std::vector<BaseFloat>>& probs);
CTCBeamSearchOptions opts_;
std::shared_ptr<Scorer> init_ext_scorer_; // todo separate later
std::vector<std::string> vocabulary_; // todo remove later
int space_id_;
std::shared_ptr<PathTrie> root_;
std::vector<PathTrie*> prefixes_;
DISALLOW_COPY_AND_ASSIGN(CTCBeamSearch);
};
} // namespace ppspeech

@ -1,167 +0,0 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// used by deepspeech2
#include "base/flags.h"
#include "base/log.h"
#include "decoder/ctc_beam_search_decoder.h"
#include "frontend/audio/data_cache.h"
#include "kaldi/util/table-types.h"
#include "nnet/decodable.h"
#include "nnet/ds2_nnet.h"
DEFINE_string(feature_rspecifier, "", "test feature rspecifier");
DEFINE_string(result_wspecifier, "", "test result wspecifier");
DEFINE_string(model_path, "avg_1.jit.pdmodel", "paddle nnet model");
DEFINE_string(param_path, "avg_1.jit.pdiparams", "paddle nnet model param");
DEFINE_string(dict_file, "vocab.txt", "vocabulary of lm");
DEFINE_string(lm_path, "", "language model");
DEFINE_int32(receptive_field_length,
7,
"receptive field of two CNN(kernel=3) downsampling module.");
DEFINE_int32(subsampling_rate,
4,
"two CNN(kernel=3) module downsampling rate.");
DEFINE_string(
model_input_names,
"audio_chunk,audio_chunk_lens,chunk_state_h_box,chunk_state_c_box",
"model input names");
DEFINE_string(model_output_names,
"softmax_0.tmp_0,tmp_5,concat_0.tmp_0,concat_1.tmp_0",
"model output names");
DEFINE_string(model_cache_names,
"chunk_state_h_box,chunk_state_c_box",
"model cache names");
DEFINE_string(model_cache_shapes, "5-1-1024,5-1-1024", "model cache shapes");
DEFINE_int32(nnet_decoder_chunk, 1, "paddle nnet forward chunk");
using kaldi::BaseFloat;
using kaldi::Matrix;
using std::vector;
// test ds2 online decoder by feeding speech feature
int main(int argc, char* argv[]) {
gflags::SetUsageMessage("Usage:");
gflags::ParseCommandLineFlags(&argc, &argv, false);
google::InitGoogleLogging(argv[0]);
google::InstallFailureSignalHandler();
FLAGS_logtostderr = 1;
CHECK_NE(FLAGS_result_wspecifier, "");
CHECK_NE(FLAGS_feature_rspecifier, "");
kaldi::SequentialBaseFloatMatrixReader feature_reader(
FLAGS_feature_rspecifier);
kaldi::TokenWriter result_writer(FLAGS_result_wspecifier);
std::string model_path = FLAGS_model_path;
std::string model_params = FLAGS_param_path;
std::string dict_file = FLAGS_dict_file;
std::string lm_path = FLAGS_lm_path;
LOG(INFO) << "model path: " << model_path;
LOG(INFO) << "model param: " << model_params;
LOG(INFO) << "dict path: " << dict_file;
LOG(INFO) << "lm path: " << lm_path;
int32 num_done = 0, num_err = 0;
ppspeech::CTCBeamSearchOptions opts;
opts.dict_file = dict_file;
opts.lm_path = lm_path;
ppspeech::CTCBeamSearch decoder(opts);
ppspeech::ModelOptions model_opts = ppspeech::ModelOptions::InitFromFlags();
std::shared_ptr<ppspeech::PaddleNnet> nnet(
new ppspeech::PaddleNnet(model_opts));
std::shared_ptr<ppspeech::DataCache> raw_data(new ppspeech::DataCache());
std::shared_ptr<ppspeech::Decodable> decodable(
new ppspeech::Decodable(nnet, raw_data));
int32 chunk_size = FLAGS_receptive_field_length +
(FLAGS_nnet_decoder_chunk - 1) * FLAGS_subsampling_rate;
int32 chunk_stride = FLAGS_subsampling_rate * FLAGS_nnet_decoder_chunk;
int32 receptive_field_length = FLAGS_receptive_field_length;
LOG(INFO) << "chunk size (frame): " << chunk_size;
LOG(INFO) << "chunk stride (frame): " << chunk_stride;
LOG(INFO) << "receptive field (frame): " << receptive_field_length;
decoder.InitDecoder();
kaldi::Timer timer;
for (; !feature_reader.Done(); feature_reader.Next()) {
string utt = feature_reader.Key();
kaldi::Matrix<BaseFloat> feature = feature_reader.Value();
raw_data->SetDim(feature.NumCols());
LOG(INFO) << "process utt: " << utt;
LOG(INFO) << "rows: " << feature.NumRows();
LOG(INFO) << "cols: " << feature.NumCols();
int32 row_idx = 0;
int32 padding_len = 0;
int32 ori_feature_len = feature.NumRows();
if ((feature.NumRows() - chunk_size) % chunk_stride != 0) {
padding_len =
chunk_stride - (feature.NumRows() - chunk_size) % chunk_stride;
feature.Resize(feature.NumRows() + padding_len,
feature.NumCols(),
kaldi::kCopyData);
}
int32 num_chunks = (feature.NumRows() - chunk_size) / chunk_stride + 1;
for (int chunk_idx = 0; chunk_idx < num_chunks; ++chunk_idx) {
kaldi::Vector<kaldi::BaseFloat> feature_chunk(chunk_size *
feature.NumCols());
int32 feature_chunk_size = 0;
if (ori_feature_len > chunk_idx * chunk_stride) {
feature_chunk_size = std::min(
ori_feature_len - chunk_idx * chunk_stride, chunk_size);
}
if (feature_chunk_size < receptive_field_length) break;
int32 start = chunk_idx * chunk_stride;
for (int row_id = 0; row_id < chunk_size; ++row_id) {
kaldi::SubVector<kaldi::BaseFloat> tmp(feature, start);
kaldi::SubVector<kaldi::BaseFloat> f_chunk_tmp(
feature_chunk.Data() + row_id * feature.NumCols(),
feature.NumCols());
f_chunk_tmp.CopyFromVec(tmp);
++start;
}
raw_data->Accept(feature_chunk);
if (chunk_idx == num_chunks - 1) {
raw_data->SetFinished();
}
decoder.AdvanceDecode(decodable);
}
std::string result;
result = decoder.GetFinalBestPath();
decodable->Reset();
decoder.Reset();
if (result.empty()) {
// the TokenWriter can not write empty string.
++num_err;
KALDI_LOG << " the result of " << utt << " is empty";
continue;
}
KALDI_LOG << " the result of " << utt << " is " << result;
result_writer.Write(utt, result);
++num_done;
}
KALDI_LOG << "Done " << num_done << " utterances, " << num_err
<< " with errors.";
double elapsed = timer.Elapsed();
KALDI_LOG << " cost:" << elapsed << " s";
return (num_done != 0 ? 0 : 1);
}

@ -1,9 +0,0 @@
ThreadPool/
build/
dist/
kenlm/
openfst-1.6.3/
openfst-1.6.3.tar.gz
swig_decoders.egg-info/
decoders_wrap.cxx
swig_decoders.py

@ -1,607 +0,0 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "COPYING.APACHE2.0");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ctc_beam_search_decoder.h"
#include <algorithm>
#include <cmath>
#include <iostream>
#include <limits>
#include <map>
#include <utility>
#include "ThreadPool.h"
#include "fst/fstlib.h"
#include "decoder_utils.h"
#include "path_trie.h"
using FSTMATCH = fst::SortedMatcher<fst::StdVectorFst>;
std::vector<std::pair<double, std::string>> ctc_beam_search_decoding(
const std::vector<std::vector<double>> &probs_seq,
const std::vector<std::string> &vocabulary,
size_t beam_size,
double cutoff_prob,
size_t cutoff_top_n,
Scorer *ext_scorer,
size_t blank_id) {
// dimension check
size_t num_time_steps = probs_seq.size();
for (size_t i = 0; i < num_time_steps; ++i) {
VALID_CHECK_EQ(probs_seq[i].size(),
// vocabulary.size() + 1,
vocabulary.size(),
"The shape of probs_seq does not match with "
"the shape of the vocabulary");
}
// assign space id
auto it = std::find(vocabulary.begin(), vocabulary.end(), kSPACE);
int space_id = it - vocabulary.begin();
// if no space in vocabulary
if ((size_t)space_id >= vocabulary.size()) {
space_id = -2;
}
// init prefixes' root
PathTrie root;
root.score = root.log_prob_b_prev = 0.0;
std::vector<PathTrie *> prefixes;
prefixes.push_back(&root);
if (ext_scorer != nullptr && !ext_scorer->is_character_based()) {
auto fst_dict =
static_cast<fst::StdVectorFst *>(ext_scorer->dictionary);
fst::StdVectorFst *dict_ptr = fst_dict->Copy(true);
root.set_dictionary(dict_ptr);
auto matcher = std::make_shared<FSTMATCH>(*dict_ptr, fst::MATCH_INPUT);
root.set_matcher(matcher);
}
// prefix search over time
for (size_t time_step = 0; time_step < num_time_steps; ++time_step) {
auto &prob = probs_seq[time_step];
float min_cutoff = -NUM_FLT_INF;
bool full_beam = false;
if (ext_scorer != nullptr) {
size_t num_prefixes = std::min(prefixes.size(), beam_size);
std::sort(prefixes.begin(),
prefixes.begin() + num_prefixes,
prefix_compare);
min_cutoff = prefixes[num_prefixes - 1]->score +
std::log(prob[blank_id]) -
std::max(0.0, ext_scorer->beta);
full_beam = (num_prefixes == beam_size);
}
std::vector<std::pair<size_t, float>> log_prob_idx =
get_pruned_log_probs(prob, cutoff_prob, cutoff_top_n);
// loop over chars
for (size_t index = 0; index < log_prob_idx.size(); index++) {
auto c = log_prob_idx[index].first;
auto log_prob_c = log_prob_idx[index].second;
for (size_t i = 0; i < prefixes.size() && i < beam_size; ++i) {
auto prefix = prefixes[i];
if (full_beam && log_prob_c + prefix->score < min_cutoff) {
break;
}
// blank
if (c == blank_id) {
prefix->log_prob_b_cur = log_sum_exp(
prefix->log_prob_b_cur, log_prob_c + prefix->score);
continue;
}
// repeated character
if (c == prefix->character) {
prefix->log_prob_nb_cur =
log_sum_exp(prefix->log_prob_nb_cur,
log_prob_c + prefix->log_prob_nb_prev);
}
// get new prefix
auto prefix_new = prefix->get_path_trie(c);
if (prefix_new != nullptr) {
float log_p = -NUM_FLT_INF;
if (c == prefix->character &&
prefix->log_prob_b_prev > -NUM_FLT_INF) {
log_p = log_prob_c + prefix->log_prob_b_prev;
} else if (c != prefix->character) {
log_p = log_prob_c + prefix->score;
}
// language model scoring
if (ext_scorer != nullptr &&
(c == space_id || ext_scorer->is_character_based())) {
PathTrie *prefix_to_score = nullptr;
// skip scoring the space
if (ext_scorer->is_character_based()) {
prefix_to_score = prefix_new;
} else {
prefix_to_score = prefix;
}
float score = 0.0;
std::vector<std::string> ngram;
ngram = ext_scorer->make_ngram(prefix_to_score);
score = ext_scorer->get_log_cond_prob(ngram) *
ext_scorer->alpha;
log_p += score;
log_p += ext_scorer->beta;
}
prefix_new->log_prob_nb_cur =
log_sum_exp(prefix_new->log_prob_nb_cur, log_p);
}
} // end of loop over prefix
} // end of loop over vocabulary
prefixes.clear();
// update log probs
root.iterate_to_vec(prefixes);
// only preserve top beam_size prefixes
if (prefixes.size() >= beam_size) {
std::nth_element(prefixes.begin(),
prefixes.begin() + beam_size,
prefixes.end(),
prefix_compare);
for (size_t i = beam_size; i < prefixes.size(); ++i) {
prefixes[i]->remove();
}
}
} // end of loop over time
// score the last word of each prefix that doesn't end with space
if (ext_scorer != nullptr && !ext_scorer->is_character_based()) {
for (size_t i = 0; i < beam_size && i < prefixes.size(); ++i) {
auto prefix = prefixes[i];
if (!prefix->is_empty() && prefix->character != space_id) {
float score = 0.0;
std::vector<std::string> ngram = ext_scorer->make_ngram(prefix);
score =
ext_scorer->get_log_cond_prob(ngram) * ext_scorer->alpha;
score += ext_scorer->beta;
prefix->score += score;
}
}
}
size_t num_prefixes = std::min(prefixes.size(), beam_size);
std::sort(
prefixes.begin(), prefixes.begin() + num_prefixes, prefix_compare);
// compute approximate ctc score as the return score, without affecting the
// return order of decoding result. To delete when decoder gets stable.
for (size_t i = 0; i < beam_size && i < prefixes.size(); ++i) {
double approx_ctc = prefixes[i]->score;
if (ext_scorer != nullptr) {
std::vector<int> output;
prefixes[i]->get_path_vec(output);
auto prefix_length = output.size();
auto words = ext_scorer->split_labels(output);
// remove word insert
approx_ctc = approx_ctc - prefix_length * ext_scorer->beta;
// remove language model weight:
approx_ctc -=
(ext_scorer->get_sent_log_prob(words)) * ext_scorer->alpha;
}
prefixes[i]->approx_ctc = approx_ctc;
}
return get_beam_search_result(prefixes, vocabulary, beam_size);
}
std::vector<std::vector<std::pair<double, std::string>>>
ctc_beam_search_decoding_batch(
const std::vector<std::vector<std::vector<double>>> &probs_split,
const std::vector<std::string> &vocabulary,
size_t beam_size,
size_t num_processes,
double cutoff_prob,
size_t cutoff_top_n,
Scorer *ext_scorer,
size_t blank_id) {
VALID_CHECK_GT(num_processes, 0, "num_processes must be nonnegative!");
// thread pool
ThreadPool pool(num_processes);
// number of samples
size_t batch_size = probs_split.size();
// enqueue the tasks of decoding
std::vector<std::future<std::vector<std::pair<double, std::string>>>> res;
for (size_t i = 0; i < batch_size; ++i) {
res.emplace_back(pool.enqueue(ctc_beam_search_decoding,
probs_split[i],
vocabulary,
beam_size,
cutoff_prob,
cutoff_top_n,
ext_scorer,
blank_id));
}
// get decoding results
std::vector<std::vector<std::pair<double, std::string>>> batch_results;
for (size_t i = 0; i < batch_size; ++i) {
batch_results.emplace_back(res[i].get());
}
return batch_results;
}
void ctc_beam_search_decode_chunk_begin(PathTrie *root, Scorer *ext_scorer) {
if (ext_scorer != nullptr && !ext_scorer->is_character_based()) {
auto fst_dict =
static_cast<fst::StdVectorFst *>(ext_scorer->dictionary);
fst::StdVectorFst *dict_ptr = fst_dict->Copy(true);
root->set_dictionary(dict_ptr);
auto matcher = std::make_shared<FSTMATCH>(*dict_ptr, fst::MATCH_INPUT);
root->set_matcher(matcher);
}
}
void ctc_beam_search_decode_chunk(
PathTrie *root,
std::vector<PathTrie *> &prefixes,
const std::vector<std::vector<double>> &probs_seq,
const std::vector<std::string> &vocabulary,
size_t beam_size,
double cutoff_prob,
size_t cutoff_top_n,
Scorer *ext_scorer,
size_t blank_id) {
// dimension check
size_t num_time_steps = probs_seq.size();
for (size_t i = 0; i < num_time_steps; ++i) {
VALID_CHECK_EQ(probs_seq[i].size(),
// vocabulary.size() + 1,
vocabulary.size(),
"The shape of probs_seq does not match with "
"the shape of the vocabulary");
}
// assign space id
auto it = std::find(vocabulary.begin(), vocabulary.end(), kSPACE);
int space_id = it - vocabulary.begin();
// if no space in vocabulary
if ((size_t)space_id >= vocabulary.size()) {
space_id = -2;
}
// init prefixes' root
//
// prefix search over time
for (size_t time_step = 0; time_step < num_time_steps; ++time_step) {
auto &prob = probs_seq[time_step];
float min_cutoff = -NUM_FLT_INF;
bool full_beam = false;
if (ext_scorer != nullptr) {
size_t num_prefixes = std::min(prefixes.size(), beam_size);
std::sort(prefixes.begin(),
prefixes.begin() + num_prefixes,
prefix_compare);
min_cutoff = prefixes[num_prefixes - 1]->score +
std::log(prob[blank_id]) -
std::max(0.0, ext_scorer->beta);
full_beam = (num_prefixes == beam_size);
}
std::vector<std::pair<size_t, float>> log_prob_idx =
get_pruned_log_probs(prob, cutoff_prob, cutoff_top_n);
// loop over chars
for (size_t index = 0; index < log_prob_idx.size(); index++) {
auto c = log_prob_idx[index].first;
auto log_prob_c = log_prob_idx[index].second;
for (size_t i = 0; i < prefixes.size() && i < beam_size; ++i) {
auto prefix = prefixes[i];
if (full_beam && log_prob_c + prefix->score < min_cutoff) {
break;
}
// blank
if (c == blank_id) {
prefix->log_prob_b_cur = log_sum_exp(
prefix->log_prob_b_cur, log_prob_c + prefix->score);
continue;
}
// repeated character
if (c == prefix->character) {
prefix->log_prob_nb_cur =
log_sum_exp(prefix->log_prob_nb_cur,
log_prob_c + prefix->log_prob_nb_prev);
}
// get new prefix
auto prefix_new = prefix->get_path_trie(c);
if (prefix_new != nullptr) {
float log_p = -NUM_FLT_INF;
if (c == prefix->character &&
prefix->log_prob_b_prev > -NUM_FLT_INF) {
log_p = log_prob_c + prefix->log_prob_b_prev;
} else if (c != prefix->character) {
log_p = log_prob_c + prefix->score;
}
// language model scoring
if (ext_scorer != nullptr &&
(c == space_id || ext_scorer->is_character_based())) {
PathTrie *prefix_to_score = nullptr;
// skip scoring the space
if (ext_scorer->is_character_based()) {
prefix_to_score = prefix_new;
} else {
prefix_to_score = prefix;
}
float score = 0.0;
std::vector<std::string> ngram;
ngram = ext_scorer->make_ngram(prefix_to_score);
score = ext_scorer->get_log_cond_prob(ngram) *
ext_scorer->alpha;
log_p += score;
log_p += ext_scorer->beta;
}
prefix_new->log_prob_nb_cur =
log_sum_exp(prefix_new->log_prob_nb_cur, log_p);
}
} // end of loop over prefix
} // end of loop over vocabulary
prefixes.clear();
// update log probs
root->iterate_to_vec(prefixes);
// only preserve top beam_size prefixes
if (prefixes.size() >= beam_size) {
std::nth_element(prefixes.begin(),
prefixes.begin() + beam_size,
prefixes.end(),
prefix_compare);
for (size_t i = beam_size; i < prefixes.size(); ++i) {
prefixes[i]->remove();
}
}
} // end of loop over time
return;
}
std::vector<std::pair<double, std::string>> get_decode_result(
std::vector<PathTrie *> &prefixes,
const std::vector<std::string> &vocabulary,
size_t beam_size,
Scorer *ext_scorer) {
auto it = std::find(vocabulary.begin(), vocabulary.end(), kSPACE);
int space_id = it - vocabulary.begin();
// if no space in vocabulary
if ((size_t)space_id >= vocabulary.size()) {
space_id = -2;
}
// score the last word of each prefix that doesn't end with space
if (ext_scorer != nullptr && !ext_scorer->is_character_based()) {
for (size_t i = 0; i < beam_size && i < prefixes.size(); ++i) {
auto prefix = prefixes[i];
if (!prefix->is_empty() && prefix->character != space_id) {
float score = 0.0;
std::vector<std::string> ngram = ext_scorer->make_ngram(prefix);
score =
ext_scorer->get_log_cond_prob(ngram) * ext_scorer->alpha;
score += ext_scorer->beta;
prefix->score += score;
}
}
}
size_t num_prefixes = std::min(prefixes.size(), beam_size);
std::sort(
prefixes.begin(), prefixes.begin() + num_prefixes, prefix_compare);
// compute aproximate ctc score as the return score, without affecting the
// return order of decoding result. To delete when decoder gets stable.
for (size_t i = 0; i < beam_size && i < prefixes.size(); ++i) {
double approx_ctc = prefixes[i]->score;
if (ext_scorer != nullptr) {
std::vector<int> output;
prefixes[i]->get_path_vec(output);
auto prefix_length = output.size();
auto words = ext_scorer->split_labels(output);
// remove word insert
approx_ctc = approx_ctc - prefix_length * ext_scorer->beta;
// remove language model weight:
approx_ctc -=
(ext_scorer->get_sent_log_prob(words)) * ext_scorer->alpha;
}
prefixes[i]->approx_ctc = approx_ctc;
}
std::vector<std::pair<double, std::string>> res =
get_beam_search_result(prefixes, vocabulary, beam_size);
// pay back the last word of each prefix that doesn't end with space (for
// decoding by chunk)
if (ext_scorer != nullptr && !ext_scorer->is_character_based()) {
for (size_t i = 0; i < beam_size && i < prefixes.size(); ++i) {
auto prefix = prefixes[i];
if (!prefix->is_empty() && prefix->character != space_id) {
float score = 0.0;
std::vector<std::string> ngram = ext_scorer->make_ngram(prefix);
score =
ext_scorer->get_log_cond_prob(ngram) * ext_scorer->alpha;
score += ext_scorer->beta;
prefix->score -= score;
}
}
}
return res;
}
void free_storage(std::unique_ptr<CtcBeamSearchDecoderStorage> &storage) {
storage = nullptr;
}
CtcBeamSearchDecoderBatch::~CtcBeamSearchDecoderBatch() {}
CtcBeamSearchDecoderBatch::CtcBeamSearchDecoderBatch(
const std::vector<std::string> &vocabulary,
size_t batch_size,
size_t beam_size,
size_t num_processes,
double cutoff_prob,
size_t cutoff_top_n,
Scorer *ext_scorer,
size_t blank_id)
: batch_size(batch_size),
beam_size(beam_size),
num_processes(num_processes),
cutoff_prob(cutoff_prob),
cutoff_top_n(cutoff_top_n),
ext_scorer(ext_scorer),
blank_id(blank_id) {
VALID_CHECK_GT(this->beam_size, 0, "beam_size must be greater than 0!");
VALID_CHECK_GT(
this->num_processes, 0, "num_processes must be nonnegative!");
this->vocabulary = vocabulary;
for (size_t i = 0; i < batch_size; i++) {
this->decoder_storage_vector.push_back(
std::unique_ptr<CtcBeamSearchDecoderStorage>(
new CtcBeamSearchDecoderStorage()));
ctc_beam_search_decode_chunk_begin(
this->decoder_storage_vector[i]->root, ext_scorer);
}
};
/**
* Input
* probs_split: shape [B, T, D]
*/
void CtcBeamSearchDecoderBatch::next(
const std::vector<std::vector<std::vector<double>>> &probs_split,
const std::vector<std::string> &has_value) {
VALID_CHECK_GT(num_processes, 0, "num_processes must be nonnegative!");
// thread pool
size_t num_has_value = 0;
for (int i = 0; i < has_value.size(); i++)
if (has_value[i] == "true") num_has_value += 1;
ThreadPool pool(std::min(num_processes, num_has_value));
// number of samples
size_t probs_num = probs_split.size();
VALID_CHECK_EQ(this->batch_size,
probs_num,
"The batch size of the current input data should be same "
"with the input data before");
// enqueue the tasks of decoding
std::vector<std::future<void>> res;
for (size_t i = 0; i < batch_size; ++i) {
if (has_value[i] == "true") {
res.emplace_back(pool.enqueue(
ctc_beam_search_decode_chunk,
std::ref(this->decoder_storage_vector[i]->root),
std::ref(this->decoder_storage_vector[i]->prefixes),
probs_split[i],
this->vocabulary,
this->beam_size,
this->cutoff_prob,
this->cutoff_top_n,
this->ext_scorer,
this->blank_id));
}
}
for (size_t i = 0; i < batch_size; ++i) {
res[i].get();
}
return;
};
/**
* Return
* batch_result: shape[B, beam_size,(-approx_ctc score, string)]
*/
std::vector<std::vector<std::pair<double, std::string>>>
CtcBeamSearchDecoderBatch::decode() {
VALID_CHECK_GT(
this->num_processes, 0, "num_processes must be nonnegative!");
// thread pool
ThreadPool pool(this->num_processes);
// number of samples
// enqueue the tasks of decoding
std::vector<std::future<std::vector<std::pair<double, std::string>>>> res;
for (size_t i = 0; i < this->batch_size; ++i) {
res.emplace_back(
pool.enqueue(get_decode_result,
std::ref(this->decoder_storage_vector[i]->prefixes),
this->vocabulary,
this->beam_size,
this->ext_scorer));
}
// get decoding results
std::vector<std::vector<std::pair<double, std::string>>> batch_results;
for (size_t i = 0; i < this->batch_size; ++i) {
batch_results.emplace_back(res[i].get());
}
return batch_results;
}
/**
* reset the state of ctcBeamSearchDecoderBatch
*/
void CtcBeamSearchDecoderBatch::reset_state(size_t batch_size,
size_t beam_size,
size_t num_processes,
double cutoff_prob,
size_t cutoff_top_n) {
this->batch_size = batch_size;
this->beam_size = beam_size;
this->num_processes = num_processes;
this->cutoff_prob = cutoff_prob;
this->cutoff_top_n = cutoff_top_n;
VALID_CHECK_GT(this->beam_size, 0, "beam_size must be greater than 0!");
VALID_CHECK_GT(
this->num_processes, 0, "num_processes must be nonnegative!");
// thread pool
ThreadPool pool(this->num_processes);
// number of samples
// enqueue the tasks of decoding
std::vector<std::future<void>> res;
size_t storage_size = decoder_storage_vector.size();
for (size_t i = 0; i < storage_size; i++) {
res.emplace_back(pool.enqueue(
free_storage, std::ref(this->decoder_storage_vector[i])));
}
for (size_t i = 0; i < storage_size; ++i) {
res[i].get();
}
std::vector<std::unique_ptr<CtcBeamSearchDecoderStorage>>().swap(
decoder_storage_vector);
for (size_t i = 0; i < this->batch_size; i++) {
this->decoder_storage_vector.push_back(
std::unique_ptr<CtcBeamSearchDecoderStorage>(
new CtcBeamSearchDecoderStorage()));
ctc_beam_search_decode_chunk_begin(
this->decoder_storage_vector[i]->root, this->ext_scorer);
}
}

@ -1,175 +0,0 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "COPYING.APACHE2.0");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef CTC_BEAM_SEARCH_DECODER_H_
#define CTC_BEAM_SEARCH_DECODER_H_
#include <string>
#include <utility>
#include <vector>
#include "scorer.h"
/* CTC Beam Search Decoder
* Parameters:
* probs_seq: 2-D vector that each element is a vector of probabilities
* over vocabulary of one time step.
* vocabulary: A vector of vocabulary.
* beam_size: The width of beam search.
* cutoff_prob: Cutoff probability for pruning.
* cutoff_top_n: Cutoff number for pruning.
* ext_scorer: External scorer to evaluate a prefix, which consists of
* n-gram language model scoring and word insertion term.
* Default null, decoding the input sample without scorer.
* Return:
* A vector that each element is a pair of score and decoding result,
* in desending order.
*/
std::vector<std::pair<double, std::string>> ctc_beam_search_decoding(
const std::vector<std::vector<double>> &probs_seq,
const std::vector<std::string> &vocabulary,
size_t beam_size,
double cutoff_prob = 1.0,
size_t cutoff_top_n = 40,
Scorer *ext_scorer = nullptr,
size_t blank_id = 0);
/* CTC Beam Search Decoder for batch data
* Parameters:
* probs_seq: 3-D vector that each element is a 2-D vector that can be used
* by ctc_beam_search_decoder().
* vocabulary: A vector of vocabulary.
* beam_size: The width of beam search.
* num_processes: Number of threads for beam search.
* cutoff_prob: Cutoff probability for pruning.
* cutoff_top_n: Cutoff number for pruning.
* ext_scorer: External scorer to evaluate a prefix, which consists of
* n-gram language model scoring and word insertion term.
* Default null, decoding the input sample without scorer.
* Return:
* A 2-D vector that each element is a vector of beam search decoding
* result for one audio sample.
*/
std::vector<std::vector<std::pair<double, std::string>>>
ctc_beam_search_decoding_batch(
const std::vector<std::vector<std::vector<double>>> &probs_split,
const std::vector<std::string> &vocabulary,
size_t beam_size,
size_t num_processes,
double cutoff_prob = 1.0,
size_t cutoff_top_n = 40,
Scorer *ext_scorer = nullptr,
size_t blank_id = 0);
/**
* Store the root and prefixes for decoder
*/
class CtcBeamSearchDecoderStorage {
public:
PathTrie *root = nullptr;
std::vector<PathTrie *> prefixes;
CtcBeamSearchDecoderStorage() {
// init prefixes' root
this->root = new PathTrie();
this->root->log_prob_b_prev = 0.0;
// The score of root is in log scale.Since the prob=1.0, the prob score
// in log scale is 0.0
this->root->score = root->log_prob_b_prev;
// std::vector<PathTrie *> prefixes;
this->prefixes.push_back(root);
};
~CtcBeamSearchDecoderStorage() {
if (root != nullptr) {
delete root;
root = nullptr;
}
};
};
/**
* The ctc beam search decoder, support batchsize >= 1
*/
class CtcBeamSearchDecoderBatch {
public:
CtcBeamSearchDecoderBatch(const std::vector<std::string> &vocabulary,
size_t batch_size,
size_t beam_size,
size_t num_processes,
double cutoff_prob,
size_t cutoff_top_n,
Scorer *ext_scorer,
size_t blank_id);
~CtcBeamSearchDecoderBatch();
void next(const std::vector<std::vector<std::vector<double>>> &probs_split,
const std::vector<std::string> &has_value);
std::vector<std::vector<std::pair<double, std::string>>> decode();
void reset_state(size_t batch_size,
size_t beam_size,
size_t num_processes,
double cutoff_prob,
size_t cutoff_top_n);
private:
std::vector<std::string> vocabulary;
size_t batch_size;
size_t beam_size;
size_t num_processes;
double cutoff_prob;
size_t cutoff_top_n;
Scorer *ext_scorer;
size_t blank_id;
std::vector<std::unique_ptr<CtcBeamSearchDecoderStorage>>
decoder_storage_vector;
};
/**
* function for chunk decoding
*/
void ctc_beam_search_decode_chunk(
PathTrie *root,
std::vector<PathTrie *> &prefixes,
const std::vector<std::vector<double>> &probs_seq,
const std::vector<std::string> &vocabulary,
size_t beam_size,
double cutoff_prob,
size_t cutoff_top_n,
Scorer *ext_scorer,
size_t blank_id);
std::vector<std::pair<double, std::string>> get_decode_result(
std::vector<PathTrie *> &prefixes,
const std::vector<std::string> &vocabulary,
size_t beam_size,
Scorer *ext_scorer);
/**
* free the CtcBeamSearchDecoderStorage
*/
void free_storage(std::unique_ptr<CtcBeamSearchDecoderStorage> &storage);
/**
* initialize the root
*/
void ctc_beam_search_decode_chunk_begin(PathTrie *root, Scorer *ext_scorer);
#endif // CTC_BEAM_SEARCH_DECODER_H_

@ -1,61 +0,0 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "COPYING.APACHE2.0");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ctc_greedy_decoder.h"
#include "decoder_utils.h"
std::string ctc_greedy_decoding(
const std::vector<std::vector<double>> &probs_seq,
const std::vector<std::string> &vocabulary,
size_t blank_id) {
// dimension check
size_t num_time_steps = probs_seq.size();
for (size_t i = 0; i < num_time_steps; ++i) {
VALID_CHECK_EQ(probs_seq[i].size(),
vocabulary.size(),
"The shape of probs_seq does not match with "
"the shape of the vocabulary");
}
// size_t blank_id = vocabulary.size();
std::vector<size_t> max_idx_vec(num_time_steps, 0);
std::vector<size_t> idx_vec;
for (size_t i = 0; i < num_time_steps; ++i) {
double max_prob = 0.0;
size_t max_idx = 0;
const std::vector<double> &probs_step = probs_seq[i];
for (size_t j = 0; j < probs_step.size(); ++j) {
if (max_prob < probs_step[j]) {
max_idx = j;
max_prob = probs_step[j];
}
}
// id with maximum probability in current time step
max_idx_vec[i] = max_idx;
// deduplicate
if ((i == 0) || ((i > 0) && max_idx_vec[i] != max_idx_vec[i - 1])) {
idx_vec.push_back(max_idx_vec[i]);
}
}
std::string best_path_result;
for (size_t i = 0; i < idx_vec.size(); ++i) {
if (idx_vec[i] != blank_id) {
std::string ch = vocabulary[idx_vec[i]];
best_path_result += (ch == kSPACE) ? tSPACE : ch;
}
}
return best_path_result;
}

@ -1,35 +0,0 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "COPYING.APACHE2.0");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef CTC_GREEDY_DECODER_H
#define CTC_GREEDY_DECODER_H
#include <string>
#include <vector>
/* CTC Greedy (Best Path) Decoder
*
* Parameters:
* probs_seq: 2-D vector that each element is a vector of probabilities
* over vocabulary of one time step.
* vocabulary: A vector of vocabulary.
* Return:
* The decoding result in string
*/
std::string ctc_greedy_decoding(
const std::vector<std::vector<double>>& probs_seq,
const std::vector<std::string>& vocabulary,
size_t blank_id);
#endif // CTC_GREEDY_DECODER_H

@ -1,193 +0,0 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "COPYING.APACHE2.0");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "decoder_utils.h"
#include <algorithm>
#include <cmath>
#include <limits>
std::vector<std::pair<size_t, float>> get_pruned_log_probs(
const std::vector<double> &prob_step,
double cutoff_prob,
size_t cutoff_top_n) {
std::vector<std::pair<int, double>> prob_idx;
for (size_t i = 0; i < prob_step.size(); ++i) {
prob_idx.push_back(std::pair<int, double>(i, prob_step[i]));
}
// pruning of vocabulary
size_t cutoff_len = prob_step.size();
if (cutoff_prob < 1.0 || cutoff_top_n < cutoff_len) {
std::sort(prob_idx.begin(),
prob_idx.end(),
pair_comp_second_rev<int, double>);
if (cutoff_prob < 1.0) {
double cum_prob = 0.0;
cutoff_len = 0;
for (size_t i = 0; i < prob_idx.size(); ++i) {
cum_prob += prob_idx[i].second;
cutoff_len += 1;
if (cum_prob >= cutoff_prob || cutoff_len >= cutoff_top_n)
break;
}
}
prob_idx = std::vector<std::pair<int, double>>(
prob_idx.begin(), prob_idx.begin() + cutoff_len);
}
std::vector<std::pair<size_t, float>> log_prob_idx;
for (size_t i = 0; i < cutoff_len; ++i) {
log_prob_idx.push_back(std::pair<int, float>(
prob_idx[i].first, log(prob_idx[i].second + NUM_FLT_MIN)));
}
return log_prob_idx;
}
std::vector<std::pair<double, std::string>> get_beam_search_result(
const std::vector<PathTrie *> &prefixes,
const std::vector<std::string> &vocabulary,
size_t beam_size) {
// allow for the post processing
std::vector<PathTrie *> space_prefixes;
if (space_prefixes.empty()) {
for (size_t i = 0; i < beam_size && i < prefixes.size(); ++i) {
space_prefixes.push_back(prefixes[i]);
}
}
std::sort(space_prefixes.begin(), space_prefixes.end(), prefix_compare);
std::vector<std::pair<double, std::string>> output_vecs;
for (size_t i = 0; i < beam_size && i < space_prefixes.size(); ++i) {
std::vector<int> output;
space_prefixes[i]->get_path_vec(output);
// convert index to string
std::string output_str;
for (size_t j = 0; j < output.size(); j++) {
std::string ch = vocabulary[output[j]];
output_str += (ch == kSPACE) ? tSPACE : ch;
}
std::pair<double, std::string> output_pair(
-space_prefixes[i]->approx_ctc, output_str);
output_vecs.emplace_back(output_pair);
}
return output_vecs;
}
size_t get_utf8_str_len(const std::string &str) {
size_t str_len = 0;
for (char c : str) {
str_len += ((c & 0xc0) != 0x80);
}
return str_len;
}
std::vector<std::string> split_utf8_str(const std::string &str) {
std::vector<std::string> result;
std::string out_str;
for (char c : str) {
if ((c & 0xc0) != 0x80) // new UTF-8 character
{
if (!out_str.empty()) {
result.push_back(out_str);
out_str.clear();
}
}
out_str.append(1, c);
}
result.push_back(out_str);
return result;
}
std::vector<std::string> split_str(const std::string &s,
const std::string &delim) {
std::vector<std::string> result;
std::size_t start = 0, delim_len = delim.size();
while (true) {
std::size_t end = s.find(delim, start);
if (end == std::string::npos) {
if (start < s.size()) {
result.push_back(s.substr(start));
}
break;
}
if (end > start) {
result.push_back(s.substr(start, end - start));
}
start = end + delim_len;
}
return result;
}
bool prefix_compare(const PathTrie *x, const PathTrie *y) {
if (x->score == y->score) {
if (x->character == y->character) {
return false;
} else {
return (x->character < y->character);
}
} else {
return x->score > y->score;
}
}
void add_word_to_fst(const std::vector<int> &word,
fst::StdVectorFst *dictionary) {
if (dictionary->NumStates() == 0) {
fst::StdVectorFst::StateId start = dictionary->AddState();
assert(start == 0);
dictionary->SetStart(start);
}
fst::StdVectorFst::StateId src = dictionary->Start();
fst::StdVectorFst::StateId dst;
for (auto c : word) {
dst = dictionary->AddState();
dictionary->AddArc(src, fst::StdArc(c, c, 0, dst));
src = dst;
}
dictionary->SetFinal(dst, fst::StdArc::Weight::One());
}
bool add_word_to_dictionary(
const std::string &word,
const std::unordered_map<std::string, int> &char_map,
bool add_space,
int SPACE_ID,
fst::StdVectorFst *dictionary) {
auto characters = split_utf8_str(word);
std::vector<int> int_word;
for (auto &c : characters) {
if (c == " ") {
int_word.push_back(SPACE_ID);
} else {
auto int_c = char_map.find(c);
if (int_c != char_map.end()) {
int_word.push_back(int_c->second);
} else {
return false; // return without adding
}
}
}
if (add_space) {
int_word.push_back(SPACE_ID);
}
add_word_to_fst(int_word, dictionary);
return true; // return with successful adding
}

@ -1,111 +0,0 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "COPYING.APACHE2.0");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef DECODER_UTILS_H_
#define DECODER_UTILS_H_
#include <string>
#include <utility>
#include "fst/log.h"
#include "path_trie.h"
const std::string kSPACE = "<space>";
const std::string tSPACE = " ";
const float NUM_FLT_INF = std::numeric_limits<float>::max();
const float NUM_FLT_MIN = std::numeric_limits<float>::min();
// inline function for validation check
inline void check(
bool x, const char *expr, const char *file, int line, const char *err) {
if (!x) {
std::cout << "[" << file << ":" << line << "] ";
LOG(FATAL) << "\"" << expr << "\" check failed. " << err;
}
}
#define VALID_CHECK(x, info) \
check(static_cast<bool>(x), #x, __FILE__, __LINE__, info)
#define VALID_CHECK_EQ(x, y, info) VALID_CHECK((x) == (y), info)
#define VALID_CHECK_GT(x, y, info) VALID_CHECK((x) > (y), info)
#define VALID_CHECK_LT(x, y, info) VALID_CHECK((x) < (y), info)
// Function template for comparing two pairs
template <typename T1, typename T2>
bool pair_comp_first_rev(const std::pair<T1, T2> &a,
const std::pair<T1, T2> &b) {
return a.first > b.first;
}
// Function template for comparing two pairs
template <typename T1, typename T2>
bool pair_comp_second_rev(const std::pair<T1, T2> &a,
const std::pair<T1, T2> &b) {
return a.second > b.second;
}
// Return the sum of two probabilities in log scale
template <typename T>
T log_sum_exp(const T &x, const T &y) {
static T num_min = -std::numeric_limits<T>::max();
if (x <= num_min) return y;
if (y <= num_min) return x;
T xmax = std::max(x, y);
return std::log(std::exp(x - xmax) + std::exp(y - xmax)) + xmax;
}
// Get pruned probability vector for each time step's beam search
std::vector<std::pair<size_t, float>> get_pruned_log_probs(
const std::vector<double> &prob_step,
double cutoff_prob,
size_t cutoff_top_n);
// Get beam search result from prefixes in trie tree
std::vector<std::pair<double, std::string>> get_beam_search_result(
const std::vector<PathTrie *> &prefixes,
const std::vector<std::string> &vocabulary,
size_t beam_size);
// Functor for prefix comparsion
bool prefix_compare(const PathTrie *x, const PathTrie *y);
/* Get length of utf8 encoding string
* See: http://stackoverflow.com/a/4063229
*/
size_t get_utf8_str_len(const std::string &str);
/* Split a string into a list of strings on a given string
* delimiter. NB: delimiters on beginning / end of string are
* trimmed. Eg, "FooBarFoo" split on "Foo" returns ["Bar"].
*/
std::vector<std::string> split_str(const std::string &s,
const std::string &delim);
/* Splits string into vector of strings representing
* UTF-8 characters (not same as chars)
*/
std::vector<std::string> split_utf8_str(const std::string &str);
// Add a word in index to the dicionary of fst
void add_word_to_fst(const std::vector<int> &word,
fst::StdVectorFst *dictionary);
// Add a word in string to dictionary
bool add_word_to_dictionary(
const std::string &word,
const std::unordered_map<std::string, int> &char_map,
bool add_space,
int SPACE_ID,
fst::StdVectorFst *dictionary);
#endif // DECODER_UTILS_H

@ -1,164 +0,0 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "COPYING.APACHE2.0");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "path_trie.h"
#include <algorithm>
#include <limits>
#include <memory>
#include <utility>
#include <vector>
#include "decoder_utils.h"
PathTrie::PathTrie() {
log_prob_b_prev = -NUM_FLT_INF;
log_prob_nb_prev = -NUM_FLT_INF;
log_prob_b_cur = -NUM_FLT_INF;
log_prob_nb_cur = -NUM_FLT_INF;
score = -NUM_FLT_INF;
ROOT_ = -1;
character = ROOT_;
exists_ = true;
parent = nullptr;
dictionary_ = nullptr;
dictionary_state_ = 0;
has_dictionary_ = false;
matcher_ = nullptr;
}
PathTrie::~PathTrie() {
for (auto child : children_) {
delete child.second;
child.second = nullptr;
}
}
PathTrie* PathTrie::get_path_trie(int new_char, bool reset) {
auto child = children_.begin();
for (child = children_.begin(); child != children_.end(); ++child) {
if (child->first == new_char) {
break;
}
}
if (child != children_.end()) {
if (!child->second->exists_) {
child->second->exists_ = true;
child->second->log_prob_b_prev = -NUM_FLT_INF;
child->second->log_prob_nb_prev = -NUM_FLT_INF;
child->second->log_prob_b_cur = -NUM_FLT_INF;
child->second->log_prob_nb_cur = -NUM_FLT_INF;
}
return (child->second);
} else {
if (has_dictionary_) {
matcher_->SetState(dictionary_state_);
bool found = matcher_->Find(new_char + 1);
if (!found) {
// Adding this character causes word outside dictionary
auto FSTZERO = fst::TropicalWeight::Zero();
auto final_weight = dictionary_->Final(dictionary_state_);
bool is_final = (final_weight != FSTZERO);
if (is_final && reset) {
dictionary_state_ = dictionary_->Start();
}
return nullptr;
} else {
PathTrie* new_path = new PathTrie;
new_path->character = new_char;
new_path->parent = this;
new_path->dictionary_ = dictionary_;
new_path->dictionary_state_ = matcher_->Value().nextstate;
new_path->has_dictionary_ = true;
new_path->matcher_ = matcher_;
children_.push_back(std::make_pair(new_char, new_path));
return new_path;
}
} else {
PathTrie* new_path = new PathTrie;
new_path->character = new_char;
new_path->parent = this;
children_.push_back(std::make_pair(new_char, new_path));
return new_path;
}
}
}
PathTrie* PathTrie::get_path_vec(std::vector<int>& output) {
return get_path_vec(output, ROOT_);
}
PathTrie* PathTrie::get_path_vec(std::vector<int>& output,
int stop,
size_t max_steps) {
if (character == stop || character == ROOT_ || output.size() == max_steps) {
std::reverse(output.begin(), output.end());
return this;
} else {
output.push_back(character);
return parent->get_path_vec(output, stop, max_steps);
}
}
void PathTrie::iterate_to_vec(std::vector<PathTrie*>& output) {
if (exists_) {
log_prob_b_prev = log_prob_b_cur;
log_prob_nb_prev = log_prob_nb_cur;
log_prob_b_cur = -NUM_FLT_INF;
log_prob_nb_cur = -NUM_FLT_INF;
score = log_sum_exp(log_prob_b_prev, log_prob_nb_prev);
output.push_back(this);
}
for (auto child : children_) {
child.second->iterate_to_vec(output);
}
}
void PathTrie::remove() {
exists_ = false;
if (children_.size() == 0) {
if (parent != nullptr) {
auto child = parent->children_.begin();
for (child = parent->children_.begin();
child != parent->children_.end();
++child) {
if (child->first == character) {
parent->children_.erase(child);
break;
}
}
if (parent->children_.size() == 0 && !parent->exists_) {
parent->remove();
}
}
delete this;
}
}
void PathTrie::set_dictionary(fst::StdVectorFst* dictionary) {
dictionary_ = dictionary;
dictionary_state_ = dictionary->Start();
has_dictionary_ = true;
}
using FSTMATCH = fst::SortedMatcher<fst::StdVectorFst>;
void PathTrie::set_matcher(std::shared_ptr<FSTMATCH> matcher) {
matcher_ = matcher;
}

@ -1,82 +0,0 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "COPYING.APACHE2.0");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef PATH_TRIE_H
#define PATH_TRIE_H
#include <algorithm>
#include <limits>
#include <memory>
#include <utility>
#include <vector>
#include "fst/fstlib.h"
/* Trie tree for prefix storing and manipulating, with a dictionary in
* finite-state transducer for spelling correction.
*/
class PathTrie {
public:
PathTrie();
~PathTrie();
// get new prefix after appending new char
PathTrie* get_path_trie(int new_char, bool reset = true);
// get the prefix in index from root to current node
PathTrie* get_path_vec(std::vector<int>& output);
// get the prefix in index from some stop node to current nodel
PathTrie* get_path_vec(
std::vector<int>& output,
int stop,
size_t max_steps = std::numeric_limits<size_t>::max());
// update log probs
void iterate_to_vec(std::vector<PathTrie*>& output);
// set dictionary for FST
void set_dictionary(fst::StdVectorFst* dictionary);
void set_matcher(std::shared_ptr<fst::SortedMatcher<fst::StdVectorFst>>);
bool is_empty() { return ROOT_ == character; }
// remove current path from root
void remove();
float log_prob_b_prev;
float log_prob_nb_prev;
float log_prob_b_cur;
float log_prob_nb_cur;
float score;
float approx_ctc;
int character;
PathTrie* parent;
private:
int ROOT_;
bool exists_;
bool has_dictionary_;
std::vector<std::pair<int, PathTrie*>> children_;
// pointer to dictionary of FST
fst::StdVectorFst* dictionary_;
fst::StdVectorFst::StateId dictionary_state_;
// true if finding ars in FST
std::shared_ptr<fst::SortedMatcher<fst::StdVectorFst>> matcher_;
};
#endif // PATH_TRIE_H

@ -1,232 +0,0 @@
// Licensed under GNU Lesser General Public License v3 (LGPLv3) (LGPL-3) (the
// "COPYING.LESSER.3");
#include "scorer.h"
#include <unistd.h>
#include <iostream>
#include "lm/config.hh"
#include "lm/model.hh"
#include "lm/state.hh"
#include "decoder_utils.h"
using namespace lm::ngram;
// if your platform is windows ,you need add the define
#define F_OK 0
Scorer::Scorer(double alpha,
double beta,
const std::string& lm_path,
const std::vector<std::string>& vocab_list) {
this->alpha = alpha;
this->beta = beta;
dictionary = nullptr;
is_character_based_ = true;
language_model_ = nullptr;
max_order_ = 0;
dict_size_ = 0;
SPACE_ID_ = -1;
setup(lm_path, vocab_list);
}
Scorer::~Scorer() {
if (language_model_ != nullptr) {
delete static_cast<lm::base::Model*>(language_model_);
}
if (dictionary != nullptr) {
delete static_cast<fst::StdVectorFst*>(dictionary);
}
}
void Scorer::setup(const std::string& lm_path,
const std::vector<std::string>& vocab_list) {
// load language model
load_lm(lm_path);
// set char map for scorer
set_char_map(vocab_list);
// fill the dictionary for FST
if (!is_character_based()) {
fill_dictionary(true);
}
}
void Scorer::load_lm(const std::string& lm_path) {
const char* filename = lm_path.c_str();
VALID_CHECK_EQ(access(filename, F_OK), 0, "Invalid language model path");
RetriveStrEnumerateVocab enumerate;
lm::ngram::Config config;
config.enumerate_vocab = &enumerate;
language_model_ = lm::ngram::LoadVirtual(filename, config);
max_order_ = static_cast<lm::base::Model*>(language_model_)->Order();
vocabulary_ = enumerate.vocabulary;
for (size_t i = 0; i < vocabulary_.size(); ++i) {
if (is_character_based_ && vocabulary_[i] != UNK_TOKEN &&
vocabulary_[i] != START_TOKEN && vocabulary_[i] != END_TOKEN &&
get_utf8_str_len(enumerate.vocabulary[i]) > 1) {
is_character_based_ = false;
}
}
}
double Scorer::get_log_cond_prob(const std::vector<std::string>& words) {
lm::base::Model* model = static_cast<lm::base::Model*>(language_model_);
double cond_prob;
lm::ngram::State state, tmp_state, out_state;
// avoid to inserting <s> in begin
model->NullContextWrite(&state);
for (size_t i = 0; i < words.size(); ++i) {
lm::WordIndex word_index = model->BaseVocabulary().Index(words[i]);
// encounter OOV
if (word_index == 0) {
return OOV_SCORE;
}
cond_prob = model->BaseScore(&state, word_index, &out_state);
tmp_state = state;
state = out_state;
out_state = tmp_state;
}
// return log10 prob
return cond_prob;
}
double Scorer::get_sent_log_prob(const std::vector<std::string>& words) {
std::vector<std::string> sentence;
if (words.size() == 0) {
for (size_t i = 0; i < max_order_; ++i) {
sentence.push_back(START_TOKEN);
}
} else {
for (size_t i = 0; i < max_order_ - 1; ++i) {
sentence.push_back(START_TOKEN);
}
sentence.insert(sentence.end(), words.begin(), words.end());
}
sentence.push_back(END_TOKEN);
return get_log_prob(sentence);
}
double Scorer::get_log_prob(const std::vector<std::string>& words) {
assert(words.size() > max_order_);
double score = 0.0;
for (size_t i = 0; i < words.size() - max_order_ + 1; ++i) {
std::vector<std::string> ngram(words.begin() + i,
words.begin() + i + max_order_);
score += get_log_cond_prob(ngram);
}
return score;
}
void Scorer::reset_params(float alpha, float beta) {
this->alpha = alpha;
this->beta = beta;
}
std::string Scorer::vec2str(const std::vector<int>& input) {
std::string word;
for (auto ind : input) {
word += char_list_[ind];
}
return word;
}
std::vector<std::string> Scorer::split_labels(const std::vector<int>& labels) {
if (labels.empty()) return {};
std::string s = vec2str(labels);
std::vector<std::string> words;
if (is_character_based_) {
words = split_utf8_str(s);
} else {
words = split_str(s, " ");
}
return words;
}
void Scorer::set_char_map(const std::vector<std::string>& char_list) {
char_list_ = char_list;
char_map_.clear();
// Set the char map for the FST for spelling correction
for (size_t i = 0; i < char_list_.size(); i++) {
if (char_list_[i] == kSPACE) {
SPACE_ID_ = i;
}
// The initial state of FST is state 0, hence the index of chars in
// the FST should start from 1 to avoid the conflict with the initial
// state, otherwise wrong decoding results would be given.
char_map_[char_list_[i]] = i + 1;
}
}
std::vector<std::string> Scorer::make_ngram(PathTrie* prefix) {
std::vector<std::string> ngram;
PathTrie* current_node = prefix;
PathTrie* new_node = nullptr;
for (int order = 0; order < max_order_; order++) {
std::vector<int> prefix_vec;
if (is_character_based_) {
new_node = current_node->get_path_vec(prefix_vec, SPACE_ID_, 1);
current_node = new_node;
} else {
new_node = current_node->get_path_vec(prefix_vec, SPACE_ID_);
current_node = new_node->parent; // Skipping spaces
}
// reconstruct word
std::string word = vec2str(prefix_vec);
ngram.push_back(word);
if (new_node->character == -1) {
// No more spaces, but still need order
for (int i = 0; i < max_order_ - order - 1; i++) {
ngram.push_back(START_TOKEN);
}
break;
}
}
std::reverse(ngram.begin(), ngram.end());
return ngram;
}
void Scorer::fill_dictionary(bool add_space) {
fst::StdVectorFst dictionary;
// For each unigram convert to ints and put in trie
int dict_size = 0;
for (const auto& word : vocabulary_) {
bool added = add_word_to_dictionary(
word, char_map_, add_space, SPACE_ID_ + 1, &dictionary);
dict_size += added ? 1 : 0;
}
dict_size_ = dict_size;
/* Simplify FST
* This gets rid of "epsilon" transitions in the FST.
* These are transitions that don't require a string input to be taken.
* Getting rid of them is necessary to make the FST deterministic, but
* can greatly increase the size of the FST
*/
fst::RmEpsilon(&dictionary);
fst::StdVectorFst* new_dict = new fst::StdVectorFst;
/* This makes the FST deterministic, meaning for any string input there's
* only one possible state the FST could be in. It is assumed our
* dictionary is deterministic when using it.
* (lest we'd have to check for multiple transitions at each state)
*/
fst::Determinize(dictionary, new_dict);
/* Finds the simplest equivalent fst. This is unnecessary but decreases
* memory usage of the dictionary
*/
fst::Minimize(new_dict);
this->dictionary = new_dict;
}

@ -1,114 +0,0 @@
// Licensed under GNU Lesser General Public License v3 (LGPLv3) (LGPL-3) (the
// "COPYING.LESSER.3");
#ifndef SCORER_H_
#define SCORER_H_
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "lm/enumerate_vocab.hh"
#include "lm/virtual_interface.hh"
#include "lm/word_index.hh"
#include "path_trie.h"
const double OOV_SCORE = -1000.0;
const std::string START_TOKEN = "<s>";
const std::string UNK_TOKEN = "<unk>";
const std::string END_TOKEN = "</s>";
// Implement a callback to retrive the dictionary of language model.
class RetriveStrEnumerateVocab : public lm::EnumerateVocab {
public:
RetriveStrEnumerateVocab() {}
void Add(lm::WordIndex index, const StringPiece &str) {
vocabulary.push_back(std::string(str.data(), str.length()));
}
std::vector<std::string> vocabulary;
};
/* External scorer to query score for n-gram or sentence, including language
* model scoring and word insertion.
*
* Example:
* Scorer scorer(alpha, beta, "path_of_language_model");
* scorer.get_log_cond_prob({ "WORD1", "WORD2", "WORD3" });
* scorer.get_sent_log_prob({ "WORD1", "WORD2", "WORD3" });
*/
class Scorer {
public:
Scorer(double alpha,
double beta,
const std::string &lm_path,
const std::vector<std::string> &vocabulary);
~Scorer();
double get_log_cond_prob(const std::vector<std::string> &words);
double get_sent_log_prob(const std::vector<std::string> &words);
// return the max order
size_t get_max_order() const { return max_order_; }
// return the dictionary size of language model
size_t get_dict_size() const { return dict_size_; }
// retrun true if the language model is character based
bool is_character_based() const { return is_character_based_; }
// reset params alpha & beta
void reset_params(float alpha, float beta);
// make ngram for a given prefix
std::vector<std::string> make_ngram(PathTrie *prefix);
// trransform the labels in index to the vector of words (word based lm) or
// the vector of characters (character based lm)
std::vector<std::string> split_labels(const std::vector<int> &labels);
// language model weight
double alpha;
// word insertion weight
double beta;
// pointer to the dictionary of FST
void *dictionary;
protected:
// necessary setup: load language model, set char map, fill FST's dictionary
void setup(const std::string &lm_path,
const std::vector<std::string> &vocab_list);
// load language model from given path
void load_lm(const std::string &lm_path);
// fill dictionary for FST
void fill_dictionary(bool add_space);
// set char map
void set_char_map(const std::vector<std::string> &char_list);
double get_log_prob(const std::vector<std::string> &words);
// translate the vector in index to string
std::string vec2str(const std::vector<int> &input);
private:
void *language_model_;
bool is_character_based_;
size_t max_order_;
size_t dict_size_;
int SPACE_ID_;
std::vector<std::string> char_list_;
std::unordered_map<std::string, int> char_map_;
std::vector<std::string> vocabulary_;
};
#endif // SCORER_H_

@ -1,77 +0,0 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// todo refactor, repalce with gtest
#include "base/flags.h"
#include "base/log.h"
#include "decoder/ctc_beam_search_decoder.h"
#include "kaldi/util/table-types.h"
#include "nnet/decodable.h"
DEFINE_string(nnet_prob_respecifier, "", "test nnet prob rspecifier");
DEFINE_string(dict_file, "vocab.txt", "vocabulary of lm");
DEFINE_string(lm_path, "lm.klm", "language model");
using kaldi::BaseFloat;
using kaldi::Matrix;
using std::vector;
// test decoder by feeding nnet posterior probability
int main(int argc, char* argv[]) {
gflags::SetUsageMessage("Usage:");
gflags::ParseCommandLineFlags(&argc, &argv, false);
google::InitGoogleLogging(argv[0]);
google::InstallFailureSignalHandler();
FLAGS_logtostderr = 1;
kaldi::SequentialBaseFloatMatrixReader likelihood_reader(
FLAGS_nnet_prob_respecifier);
std::string dict_file = FLAGS_dict_file;
std::string lm_path = FLAGS_lm_path;
LOG(INFO) << "dict path: " << dict_file;
LOG(INFO) << "lm path: " << lm_path;
int32 num_done = 0, num_err = 0;
ppspeech::CTCBeamSearchOptions opts;
opts.dict_file = dict_file;
opts.lm_path = lm_path;
ppspeech::CTCBeamSearch decoder(opts);
std::shared_ptr<ppspeech::Decodable> decodable(
new ppspeech::Decodable(nullptr, nullptr));
decoder.InitDecoder();
for (; !likelihood_reader.Done(); likelihood_reader.Next()) {
string utt = likelihood_reader.Key();
const kaldi::Matrix<BaseFloat> likelihood = likelihood_reader.Value();
LOG(INFO) << "process utt: " << utt;
LOG(INFO) << "rows: " << likelihood.NumRows();
LOG(INFO) << "cols: " << likelihood.NumCols();
decodable->Acceptlikelihood(likelihood);
decoder.AdvanceDecode(decodable);
std::string result;
result = decoder.GetFinalBestPath();
KALDI_LOG << " the result of " << utt << " is " << result;
decodable->Reset();
decoder.Reset();
++num_done;
}
KALDI_LOG << "Done " << num_done << " utterances, " << num_err
<< " with errors.";
return (num_done != 0 ? 0 : 1);
}

@ -15,8 +15,7 @@
#pragma once #pragma once
#include "base/common.h" #include "base/common.h"
#include "decoder/ctc_beam_search_decoder.h" //#include "decoder/ctc_tlg_decoder.h"
#include "decoder/ctc_tlg_decoder.h"
// feature // feature
DEFINE_bool(use_fbank, false, "False for fbank; or linear feature"); DEFINE_bool(use_fbank, false, "False for fbank; or linear feature");

@ -1,30 +1,12 @@
set(srcs decodable.cc nnet_producer.cc) set(srcs decodable.cc nnet_producer.cc)
if(USING_DS2) list(APPEND srcs u2_nnet.cc)
list(APPEND srcs ds2_nnet.cc)
endif()
if(USING_U2)
list(APPEND srcs u2_nnet.cc)
endif()
add_library(nnet STATIC ${srcs}) add_library(nnet STATIC ${srcs})
target_link_libraries(nnet utils) target_link_libraries(nnet utils)
if(USING_U2) target_compile_options(nnet PUBLIC ${PADDLE_COMPILE_FLAGS})
target_compile_options(nnet PUBLIC ${PADDLE_COMPILE_FLAGS}) target_include_directories(nnet PUBLIC ${pybind11_INCLUDE_DIRS} ${PROJECT_SOURCE_DIR})
target_include_directories(nnet PUBLIC ${pybind11_INCLUDE_DIRS} ${PROJECT_SOURCE_DIR})
endif()
if(USING_DS2)
set(bin_name ds2_nnet_main)
add_executable(${bin_name} ${CMAKE_CURRENT_SOURCE_DIR}/${bin_name}.cc)
target_include_directories(${bin_name} PRIVATE ${SPEECHX_ROOT} ${SPEECHX_ROOT}/kaldi)
target_link_libraries(${bin_name} utils kaldi-util kaldi-matrix gflags glog nnet)
target_link_libraries(${bin_name} ${DEPS})
endif()
# test bin # test bin
#if(USING_U2) #if(USING_U2)

@ -1,218 +0,0 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "nnet/ds2_nnet.h"
#include "utils/strings.h"
namespace ppspeech {
using kaldi::Matrix;
using kaldi::Vector;
using std::shared_ptr;
using std::string;
using std::vector;
void PaddleNnet::InitCacheEncouts(const ModelOptions& opts) {
std::vector<std::string> cache_names;
cache_names = StrSplit(opts.cache_names, ",");
std::vector<std::string> cache_shapes;
cache_shapes = StrSplit(opts.cache_shape, ",");
assert(cache_shapes.size() == cache_names.size());
cache_encouts_.clear();
cache_names_idx_.clear();
for (size_t i = 0; i < cache_shapes.size(); i++) {
std::vector<std::string> tmp_shape;
tmp_shape = StrSplit(cache_shapes[i], "-");
std::vector<int> cur_shape;
std::transform(tmp_shape.begin(),
tmp_shape.end(),
std::back_inserter(cur_shape),
[](const std::string& s) { return atoi(s.c_str()); });
cache_names_idx_[cache_names[i]] = i;
std::shared_ptr<Tensor<BaseFloat>> cache_eout =
std::make_shared<Tensor<BaseFloat>>(cur_shape);
cache_encouts_.push_back(cache_eout);
}
}
PaddleNnet::PaddleNnet(const ModelOptions& opts) : opts_(opts) {
subsampling_rate_ = opts.subsample_rate;
paddle_infer::Config config;
config.SetModel(opts.model_path, opts.param_path);
if (opts.use_gpu) {
config.EnableUseGpu(500, 0);
}
config.SwitchIrOptim(opts.switch_ir_optim);
if (opts.enable_fc_padding == false) {
config.DisableFCPadding();
}
if (opts.enable_profile) {
config.EnableProfile();
}
pool.reset(
new paddle_infer::services::PredictorPool(config, opts.thread_num));
if (pool == nullptr) {
LOG(ERROR) << "create the predictor pool failed";
}
pool_usages.resize(opts.thread_num);
std::fill(pool_usages.begin(), pool_usages.end(), false);
LOG(INFO) << "load paddle model success";
LOG(INFO) << "start to check the predictor input and output names";
LOG(INFO) << "input names: " << opts.input_names;
LOG(INFO) << "output names: " << opts.output_names;
std::vector<std::string> input_names_vec = StrSplit(opts.input_names, ",");
std::vector<std::string> output_names_vec = StrSplit(opts.output_names, ",");
paddle_infer::Predictor* predictor = GetPredictor();
std::vector<std::string> model_input_names = predictor->GetInputNames();
assert(input_names_vec.size() == model_input_names.size());
for (size_t i = 0; i < model_input_names.size(); i++) {
assert(input_names_vec[i] == model_input_names[i]);
}
std::vector<std::string> model_output_names = predictor->GetOutputNames();
assert(output_names_vec.size() == model_output_names.size());
for (size_t i = 0; i < output_names_vec.size(); i++) {
assert(output_names_vec[i] == model_output_names[i]);
}
ReleasePredictor(predictor);
InitCacheEncouts(opts);
}
void PaddleNnet::Reset() { InitCacheEncouts(opts_); }
paddle_infer::Predictor* PaddleNnet::GetPredictor() {
paddle_infer::Predictor* predictor = nullptr;
std::lock_guard<std::mutex> guard(pool_mutex);
int pred_id = 0;
while (pred_id < pool_usages.size()) {
if (pool_usages[pred_id] == false) {
predictor = pool->Retrive(pred_id);
break;
}
++pred_id;
}
if (predictor) {
pool_usages[pred_id] = true;
predictor_to_thread_id[predictor] = pred_id;
} else {
LOG(INFO) << "Failed to get predictor from pool !!!";
}
return predictor;
}
int PaddleNnet::ReleasePredictor(paddle_infer::Predictor* predictor) {
std::lock_guard<std::mutex> guard(pool_mutex);
auto iter = predictor_to_thread_id.find(predictor);
if (iter == predictor_to_thread_id.end()) {
LOG(INFO) << "there is no such predictor";
return 0;
}
pool_usages[iter->second] = false;
predictor_to_thread_id.erase(predictor);
return 0;
}
shared_ptr<Tensor<BaseFloat>> PaddleNnet::GetCacheEncoder(const string& name) {
auto iter = cache_names_idx_.find(name);
if (iter == cache_names_idx_.end()) {
return nullptr;
}
assert(iter->second < cache_encouts_.size());
return cache_encouts_[iter->second];
}
void PaddleNnet::FeedForward(const Vector<BaseFloat>& features,
const int32& feature_dim,
NnetOut* out) {
paddle_infer::Predictor* predictor = GetPredictor();
int feat_row = features.Dim() / feature_dim;
std::vector<std::string> input_names = predictor->GetInputNames();
std::vector<std::string> output_names = predictor->GetOutputNames();
// feed inputs
std::unique_ptr<paddle_infer::Tensor> input_tensor =
predictor->GetInputHandle(input_names[0]);
std::vector<int> INPUT_SHAPE = {1, feat_row, feature_dim};
input_tensor->Reshape(INPUT_SHAPE);
input_tensor->CopyFromCpu(features.Data());
std::unique_ptr<paddle_infer::Tensor> input_len =
predictor->GetInputHandle(input_names[1]);
std::vector<int> input_len_size = {1};
input_len->Reshape(input_len_size);
std::vector<int64_t> audio_len;
audio_len.push_back(feat_row);
input_len->CopyFromCpu(audio_len.data());
std::unique_ptr<paddle_infer::Tensor> state_h =
predictor->GetInputHandle(input_names[2]);
shared_ptr<Tensor<BaseFloat>> h_cache = GetCacheEncoder(input_names[2]);
state_h->Reshape(h_cache->get_shape());
state_h->CopyFromCpu(h_cache->get_data().data());
std::unique_ptr<paddle_infer::Tensor> state_c =
predictor->GetInputHandle(input_names[3]);
shared_ptr<Tensor<float>> c_cache = GetCacheEncoder(input_names[3]);
state_c->Reshape(c_cache->get_shape());
state_c->CopyFromCpu(c_cache->get_data().data());
// forward
bool success = predictor->Run();
if (success == false) {
LOG(INFO) << "predictor run occurs error";
}
// fetch outpus
std::unique_ptr<paddle_infer::Tensor> h_out =
predictor->GetOutputHandle(output_names[2]);
assert(h_cache->get_shape() == h_out->shape());
h_out->CopyToCpu(h_cache->get_data().data());
std::unique_ptr<paddle_infer::Tensor> c_out =
predictor->GetOutputHandle(output_names[3]);
assert(c_cache->get_shape() == c_out->shape());
c_out->CopyToCpu(c_cache->get_data().data());
std::unique_ptr<paddle_infer::Tensor> output_tensor =
predictor->GetOutputHandle(output_names[0]);
std::vector<int> output_shape = output_tensor->shape();
int32 row = output_shape[1];
int32 col = output_shape[2];
// inferences->Resize(row * col);
// *inference_dim = col;
out->logprobs.Resize(row * col);
out->vocab_dim = col;
output_tensor->CopyToCpu(out->logprobs.Data());
ReleasePredictor(predictor);
}
} // namespace ppspeech

@ -1,97 +0,0 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <numeric>
#include "base/common.h"
#include "kaldi/matrix/kaldi-matrix.h"
#include "nnet/nnet_itf.h"
#include "paddle_inference_api.h"
namespace ppspeech {
template <typename T>
class Tensor {
public:
Tensor() {}
explicit Tensor(const std::vector<int>& shape) : _shape(shape) {
int neml = std::accumulate(
_shape.begin(), _shape.end(), 1, std::multiplies<int>());
LOG(INFO) << "Tensor neml: " << neml;
_data.resize(neml, 0);
}
void reshape(const std::vector<int>& shape) {
_shape = shape;
int neml = std::accumulate(
_shape.begin(), _shape.end(), 1, std::multiplies<int>());
_data.resize(neml, 0);
}
const std::vector<int>& get_shape() const { return _shape; }
std::vector<T>& get_data() { return _data; }
private:
std::vector<int> _shape;
std::vector<T> _data;
};
class PaddleNnet : public NnetBase {
public:
explicit PaddleNnet(const ModelOptions& opts);
void FeedForward(const kaldi::Vector<kaldi::BaseFloat>& features,
const int32& feature_dim,
NnetOut* out) override;
void AttentionRescoring(const std::vector<std::vector<int>>& hyps,
float reverse_weight,
std::vector<float>* rescoring_score) override {
VLOG(2) << "deepspeech2 not has AttentionRescoring.";
}
void Dim();
void Reset() override;
bool IsLogProb() override { return false; }
std::shared_ptr<Tensor<kaldi::BaseFloat>> GetCacheEncoder(
const std::string& name);
void InitCacheEncouts(const ModelOptions& opts);
void EncoderOuts(std::vector<kaldi::Vector<kaldi::BaseFloat>>* encoder_out)
const override {}
private:
paddle_infer::Predictor* GetPredictor();
int ReleasePredictor(paddle_infer::Predictor* predictor);
std::unique_ptr<paddle_infer::services::PredictorPool> pool;
std::vector<bool> pool_usages;
std::mutex pool_mutex;
std::map<paddle_infer::Predictor*, int> predictor_to_thread_id;
std::map<std::string, int> cache_names_idx_;
std::vector<std::shared_ptr<Tensor<kaldi::BaseFloat>>> cache_encouts_;
ModelOptions opts_;
public:
DISALLOW_COPY_AND_ASSIGN(PaddleNnet);
};
} // namespace ppspeech

@ -1,142 +0,0 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "base/common.h"
#include "decoder/param.h"
#include "frontend/audio/assembler.h"
#include "frontend/audio/data_cache.h"
#include "kaldi/util/table-types.h"
#include "nnet/decodable.h"
#include "nnet/ds2_nnet.h"
DEFINE_string(feature_rspecifier, "", "test feature rspecifier");
DEFINE_string(nnet_prob_wspecifier, "", "nnet porb wspecifier");
using kaldi::BaseFloat;
using kaldi::Matrix;
using std::vector;
int main(int argc, char* argv[]) {
gflags::SetUsageMessage("Usage:");
gflags::ParseCommandLineFlags(&argc, &argv, false);
google::InitGoogleLogging(argv[0]);
google::InstallFailureSignalHandler();
FLAGS_logtostderr = 1;
kaldi::SequentialBaseFloatMatrixReader feature_reader(
FLAGS_feature_rspecifier);
kaldi::BaseFloatMatrixWriter nnet_writer(FLAGS_nnet_prob_wspecifier);
std::string model_graph = FLAGS_model_path;
std::string model_params = FLAGS_param_path;
LOG(INFO) << "model path: " << model_graph;
LOG(INFO) << "model param: " << model_params;
int32 num_done = 0, num_err = 0;
ppspeech::ModelOptions model_opts = ppspeech::ModelOptions::InitFromFlags();
std::shared_ptr<ppspeech::PaddleNnet> nnet(
new ppspeech::PaddleNnet(model_opts));
std::shared_ptr<ppspeech::DataCache> raw_data(new ppspeech::DataCache());
std::shared_ptr<ppspeech::Decodable> decodable(
new ppspeech::Decodable(nnet, raw_data, FLAGS_acoustic_scale));
int32 chunk_size = FLAGS_receptive_field_length +
(FLAGS_nnet_decoder_chunk - 1) * FLAGS_subsampling_rate;
int32 chunk_stride = FLAGS_subsampling_rate * FLAGS_nnet_decoder_chunk;
int32 receptive_field_length = FLAGS_receptive_field_length;
LOG(INFO) << "chunk size (frame): " << chunk_size;
LOG(INFO) << "chunk stride (frame): " << chunk_stride;
LOG(INFO) << "receptive field (frame): " << receptive_field_length;
kaldi::Timer timer;
for (; !feature_reader.Done(); feature_reader.Next()) {
string utt = feature_reader.Key();
kaldi::Matrix<BaseFloat> feature = feature_reader.Value();
raw_data->SetDim(feature.NumCols());
LOG(INFO) << "process utt: " << utt;
LOG(INFO) << "rows: " << feature.NumRows();
LOG(INFO) << "cols: " << feature.NumCols();
int32 row_idx = 0;
int32 padding_len = 0;
int32 ori_feature_len = feature.NumRows();
if ((feature.NumRows() - chunk_size) % chunk_stride != 0) {
padding_len =
chunk_stride - (feature.NumRows() - chunk_size) % chunk_stride;
feature.Resize(feature.NumRows() + padding_len,
feature.NumCols(),
kaldi::kCopyData);
}
int32 num_chunks = (feature.NumRows() - chunk_size) / chunk_stride + 1;
int32 frame_idx = 0;
std::vector<kaldi::Vector<kaldi::BaseFloat>> prob_vec;
for (int chunk_idx = 0; chunk_idx < num_chunks; ++chunk_idx) {
kaldi::Vector<kaldi::BaseFloat> feature_chunk(chunk_size *
feature.NumCols());
int32 feature_chunk_size = 0;
if (ori_feature_len > chunk_idx * chunk_stride) {
feature_chunk_size = std::min(
ori_feature_len - chunk_idx * chunk_stride, chunk_size);
}
if (feature_chunk_size < receptive_field_length) break;
int32 start = chunk_idx * chunk_stride;
for (int row_id = 0; row_id < chunk_size; ++row_id) {
kaldi::SubVector<kaldi::BaseFloat> tmp(feature, start);
kaldi::SubVector<kaldi::BaseFloat> f_chunk_tmp(
feature_chunk.Data() + row_id * feature.NumCols(),
feature.NumCols());
f_chunk_tmp.CopyFromVec(tmp);
++start;
}
raw_data->Accept(feature_chunk);
if (chunk_idx == num_chunks - 1) {
raw_data->SetFinished();
}
vector<kaldi::BaseFloat> prob;
while (decodable->FrameLikelihood(frame_idx, &prob)) {
kaldi::Vector<kaldi::BaseFloat> vec_tmp(prob.size());
std::memcpy(vec_tmp.Data(),
prob.data(),
sizeof(kaldi::BaseFloat) * prob.size());
prob_vec.push_back(vec_tmp);
frame_idx++;
}
}
decodable->Reset();
if (prob_vec.size() == 0) {
// the TokenWriter can not write empty string.
++num_err;
KALDI_LOG << " the nnet prob of " << utt << " is empty";
continue;
}
kaldi::Matrix<kaldi::BaseFloat> result(prob_vec.size(),
prob_vec[0].Dim());
for (int row_idx = 0; row_idx < prob_vec.size(); ++row_idx) {
for (int32 col_idx = 0; col_idx < prob_vec[0].Dim(); ++col_idx) {
result(row_idx, col_idx) = prob_vec[row_idx](col_idx);
}
}
nnet_writer.Write(utt, result);
++num_done;
}
double elapsed = timer.Elapsed();
KALDI_LOG << " cost:" << elapsed << " s";
KALDI_LOG << "Done " << num_done << " utterances, " << num_err
<< " with errors.";
return (num_done != 0 ? 0 : 1);
}

@ -65,7 +65,6 @@ bool NnetProducer::Compute() {
size_t nframes = logprobs.Dim() / vocab_dim; size_t nframes = logprobs.Dim() / vocab_dim;
VLOG(2) << "Forward out " << nframes << " decoder frames."; VLOG(2) << "Forward out " << nframes << " decoder frames.";
std::vector<BaseFloat> logprob(vocab_dim); std::vector<BaseFloat> logprob(vocab_dim);
// remove later.
for (size_t idx = 0; idx < nframes; ++idx) { for (size_t idx = 0; idx < nframes; ++idx) {
for (size_t prob_idx = 0; prob_idx < vocab_dim; ++prob_idx) { for (size_t prob_idx = 0; prob_idx < vocab_dim; ++prob_idx) {
logprob[prob_idx] = logprobs(idx * vocab_dim + prob_idx); logprob[prob_idx] = logprobs(idx * vocab_dim + prob_idx);

@ -1,46 +1,23 @@
set(srcs) set(srcs)
if (USING_DS2)
list(APPEND srcs list(APPEND srcs
recognizer.cc u2_recognizer.cc
) )
endif()
if (USING_U2)
list(APPEND srcs
u2_recognizer.cc
)
endif()
add_library(recognizer STATIC ${srcs}) add_library(recognizer STATIC ${srcs})
target_link_libraries(recognizer PUBLIC decoder) target_link_libraries(recognizer PUBLIC decoder)
# test set(TEST_BINS
if (USING_DS2) u2_recognizer_main
set(BINS recognizer_main) u2_recognizer_thread_main
)
foreach(bin_name IN LISTS BINS)
add_executable(${bin_name} ${CMAKE_CURRENT_SOURCE_DIR}/${bin_name}.cc)
target_include_directories(${bin_name} PRIVATE ${SPEECHX_ROOT} ${SPEECHX_ROOT}/kaldi)
target_link_libraries(${bin_name} PUBLIC recognizer nnet decoder fst utils gflags glog kaldi-base kaldi-matrix kaldi-util ${DEPS})
endforeach()
endif()
if (USING_U2)
set(TEST_BINS
u2_recognizer_main
u2_recognizer_thread_main
)
foreach(bin_name IN LISTS TEST_BINS)
add_executable(${bin_name} ${CMAKE_CURRENT_SOURCE_DIR}/${bin_name}.cc)
target_include_directories(${bin_name} PRIVATE ${SPEECHX_ROOT} ${SPEECHX_ROOT}/kaldi)
target_link_libraries(${bin_name} recognizer nnet decoder fst utils gflags glog kaldi-base kaldi-matrix kaldi-util)
target_compile_options(${bin_name} PRIVATE ${PADDLE_COMPILE_FLAGS})
target_include_directories(${bin_name} PRIVATE ${pybind11_INCLUDE_DIRS} ${PROJECT_SOURCE_DIR})
target_link_libraries(${bin_name} ${PYTHON_LIBRARIES} ${PADDLE_LINK_FLAGS})
endforeach()
endif() foreach(bin_name IN LISTS TEST_BINS)
add_executable(${bin_name} ${CMAKE_CURRENT_SOURCE_DIR}/${bin_name}.cc)
target_include_directories(${bin_name} PRIVATE ${SPEECHX_ROOT} ${SPEECHX_ROOT}/kaldi)
target_link_libraries(${bin_name} recognizer nnet decoder fst utils gflags glog kaldi-base kaldi-matrix kaldi-util)
target_compile_options(${bin_name} PRIVATE ${PADDLE_COMPILE_FLAGS})
target_include_directories(${bin_name} PRIVATE ${pybind11_INCLUDE_DIRS} ${PROJECT_SOURCE_DIR})
target_link_libraries(${bin_name} ${PYTHON_LIBRARIES} ${PADDLE_LINK_FLAGS})
endforeach()

@ -1,70 +0,0 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "recognizer/recognizer.h"
namespace ppspeech {
using kaldi::BaseFloat;
using kaldi::SubVector;
using kaldi::Vector;
using kaldi::VectorBase;
using std::unique_ptr;
using std::vector;
Recognizer::Recognizer(const RecognizerResource& resource) {
// resource_ = resource;
const FeaturePipelineOptions& feature_opts = resource.feature_pipeline_opts;
feature_pipeline_.reset(new FeaturePipeline(feature_opts));
std::shared_ptr<PaddleNnet> nnet(new PaddleNnet(resource.model_opts));
BaseFloat ac_scale = resource.acoustic_scale;
decodable_.reset(new Decodable(nnet, feature_pipeline_, ac_scale));
decoder_.reset(new TLGDecoder(resource.tlg_opts));
input_finished_ = false;
}
void Recognizer::Accept(const Vector<BaseFloat>& waves) {
feature_pipeline_->Accept(waves);
}
void Recognizer::Decode() { decoder_->AdvanceDecode(decodable_); }
std::string Recognizer::GetFinalResult() {
return decoder_->GetFinalBestPath();
}
std::string Recognizer::GetPartialResult() {
return decoder_->GetPartialResult();
}
void Recognizer::SetFinished() {
feature_pipeline_->SetFinished();
input_finished_ = true;
}
bool Recognizer::IsFinished() { return input_finished_; }
void Recognizer::Reset() {
feature_pipeline_->Reset();
decodable_->Reset();
decoder_->Reset();
}
} // namespace ppspeech

@ -1,70 +0,0 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// todo refactor later (SGoat)
#pragma once
#include "decoder/ctc_beam_search_decoder.h"
#include "decoder/ctc_tlg_decoder.h"
#include "frontend/audio/feature_pipeline.h"
#include "nnet/decodable.h"
#include "nnet/ds2_nnet.h"
DECLARE_double(acoustic_scale);
namespace ppspeech {
struct RecognizerResource {
kaldi::BaseFloat acoustic_scale{1.0};
FeaturePipelineOptions feature_pipeline_opts{};
ModelOptions model_opts{};
TLGDecoderOptions tlg_opts{};
// CTCBeamSearchOptions beam_search_opts;
static RecognizerResource InitFromFlags() {
RecognizerResource resource;
resource.acoustic_scale = FLAGS_acoustic_scale;
resource.feature_pipeline_opts =
FeaturePipelineOptions::InitFromFlags();
resource.feature_pipeline_opts.assembler_opts.fill_zero = true;
LOG(INFO) << "ds2 need fill zero be true: "
<< resource.feature_pipeline_opts.assembler_opts.fill_zero;
resource.model_opts = ModelOptions::InitFromFlags();
resource.tlg_opts = TLGDecoderOptions::InitFromFlags();
return resource;
}
};
class Recognizer {
public:
explicit Recognizer(const RecognizerResource& resouce);
void Accept(const kaldi::Vector<kaldi::BaseFloat>& waves);
void Decode();
std::string GetFinalResult();
std::string GetPartialResult();
void SetFinished();
bool IsFinished();
void Reset();
private:
// std::shared_ptr<RecognizerResource> resource_;
// RecognizerResource resource_;
std::shared_ptr<FeaturePipeline> feature_pipeline_;
std::shared_ptr<Decodable> decodable_;
std::unique_ptr<TLGDecoder> decoder_;
bool input_finished_;
};
} // namespace ppspeech

@ -1,105 +0,0 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "decoder/param.h"
#include "kaldi/feat/wave-reader.h"
#include "kaldi/util/table-types.h"
#include "recognizer/recognizer.h"
DEFINE_string(wav_rspecifier, "", "test feature rspecifier");
DEFINE_string(result_wspecifier, "", "test result wspecifier");
DEFINE_double(streaming_chunk, 0.36, "streaming feature chunk size");
DEFINE_int32(sample_rate, 16000, "sample rate");
int main(int argc, char* argv[]) {
gflags::SetUsageMessage("Usage:");
gflags::ParseCommandLineFlags(&argc, &argv, false);
google::InitGoogleLogging(argv[0]);
google::InstallFailureSignalHandler();
FLAGS_logtostderr = 1;
ppspeech::RecognizerResource resource =
ppspeech::RecognizerResource::InitFromFlags();
ppspeech::Recognizer recognizer(resource);
kaldi::SequentialTableReader<kaldi::WaveHolder> wav_reader(
FLAGS_wav_rspecifier);
kaldi::TokenWriter result_writer(FLAGS_result_wspecifier);
int sample_rate = FLAGS_sample_rate;
float streaming_chunk = FLAGS_streaming_chunk;
int chunk_sample_size = streaming_chunk * sample_rate;
LOG(INFO) << "sr: " << sample_rate;
LOG(INFO) << "chunk size (s): " << streaming_chunk;
LOG(INFO) << "chunk size (sample): " << chunk_sample_size;
int32 num_done = 0, num_err = 0;
double tot_wav_duration = 0.0;
kaldi::Timer timer;
for (; !wav_reader.Done(); wav_reader.Next()) {
std::string utt = wav_reader.Key();
const kaldi::WaveData& wave_data = wav_reader.Value();
int32 this_channel = 0;
kaldi::SubVector<kaldi::BaseFloat> waveform(wave_data.Data(),
this_channel);
int tot_samples = waveform.Dim();
tot_wav_duration += tot_samples * 1.0 / sample_rate;
LOG(INFO) << "wav len (sample): " << tot_samples;
int sample_offset = 0;
std::vector<kaldi::Vector<BaseFloat>> feats;
int feature_rows = 0;
while (sample_offset < tot_samples) {
int cur_chunk_size =
std::min(chunk_sample_size, tot_samples - sample_offset);
kaldi::Vector<kaldi::BaseFloat> wav_chunk(cur_chunk_size);
for (int i = 0; i < cur_chunk_size; ++i) {
wav_chunk(i) = waveform(sample_offset + i);
}
// wav_chunk = waveform.Range(sample_offset + i, cur_chunk_size);
recognizer.Accept(wav_chunk);
if (cur_chunk_size < chunk_sample_size) {
recognizer.SetFinished();
}
recognizer.Decode();
// no overlap
sample_offset += cur_chunk_size;
}
std::string result;
result = recognizer.GetFinalResult();
recognizer.Reset();
if (result.empty()) {
// the TokenWriter can not write empty string.
++num_err;
KALDI_LOG << " the result of " << utt << " is empty";
continue;
}
KALDI_LOG << " the result of " << utt << " is " << result;
result_writer.Write(utt, result);
++num_done;
}
double elapsed = timer.Elapsed();
KALDI_LOG << "Done " << num_done << " out of " << (num_err + num_done);
KALDI_LOG << " cost:" << elapsed << " s";
KALDI_LOG << "total wav duration is: " << tot_wav_duration << " s";
KALDI_LOG << "the RTF is: " << elapsed / tot_wav_duration;
}

@ -20,15 +20,12 @@
#include "kaldi/matrix/kaldi-matrix.h" #include "kaldi/matrix/kaldi-matrix.h"
#include "kaldi/util/kaldi-io.h" #include "kaldi/util/kaldi-io.h"
#include "utils/file_utils.h" #include "utils/file_utils.h"
// #include "boost/json.hpp" #include "utils/picojson.h"
#include <boost/json/src.hpp>
DEFINE_string(json_file, "", "cmvn json file"); DEFINE_string(json_file, "", "cmvn json file");
DEFINE_string(cmvn_write_path, "./cmvn.ark", "write cmvn"); DEFINE_string(cmvn_write_path, "./cmvn.ark", "write cmvn");
DEFINE_bool(binary, true, "write cmvn in binary (true) or text(false)"); DEFINE_bool(binary, true, "write cmvn in binary (true) or text(false)");
using namespace boost::json; // from <boost/json.hpp>
int main(int argc, char* argv[]) { int main(int argc, char* argv[]) {
gflags::SetUsageMessage("Usage:"); gflags::SetUsageMessage("Usage:");
gflags::ParseCommandLineFlags(&argc, &argv, false); gflags::ParseCommandLineFlags(&argc, &argv, false);
@ -40,36 +37,49 @@ int main(int argc, char* argv[]) {
auto ifs = std::ifstream(FLAGS_json_file); auto ifs = std::ifstream(FLAGS_json_file);
std::string json_str = ppspeech::ReadFile2String(FLAGS_json_file); std::string json_str = ppspeech::ReadFile2String(FLAGS_json_file);
auto value = boost::json::parse(json_str); picojson::value value;
if (!value.is_object()) { std::string err;
const char* json_end = picojson::parse(
value, json_str.c_str(), json_str.c_str() + json_str.size(), &err);
if (!value.is<picojson::object>()) {
LOG(ERROR) << "Input json file format error."; LOG(ERROR) << "Input json file format error.";
} }
for (auto obj : value.as_object()) { const picojson::value::object& obj = value.get<picojson::object>();
if (obj.key() == "mean_stat") { for (picojson::value::object::const_iterator elem = obj.begin();
VLOG(2) << "mean_stat:" << obj.value(); elem != obj.end();
++elem) {
if (elem->first == "mean_stat") {
VLOG(2) << "mean_stat:" << elem->second;
// const picojson::value tmp =
// elem->second.get(0);//<picojson::array>();
double tmp =
elem->second.get(0).get<double>(); //<picojson::array>();
VLOG(2) << "tmp: " << tmp;
} }
if (obj.key() == "var_stat") { if (elem->first == "var_stat") {
VLOG(2) << "var_stat: " << obj.value(); VLOG(2) << "var_stat: " << elem->second;
} }
if (obj.key() == "frame_num") { if (elem->first == "frame_num") {
VLOG(2) << "frame_num: " << obj.value(); VLOG(2) << "frame_num: " << elem->second;
} }
} }
boost::json::array mean_stat = value.at("mean_stat").as_array(); const picojson::value::array& mean_stat =
value.get("mean_stat").get<picojson::array>();
std::vector<kaldi::BaseFloat> mean_stat_vec; std::vector<kaldi::BaseFloat> mean_stat_vec;
for (auto it = mean_stat.begin(); it != mean_stat.end(); it++) { for (auto it = mean_stat.begin(); it != mean_stat.end(); it++) {
mean_stat_vec.push_back(it->as_double()); mean_stat_vec.push_back((*it).get<double>());
} }
boost::json::array var_stat = value.at("var_stat").as_array(); const picojson::value::array& var_stat =
value.get("var_stat").get<picojson::array>();
std::vector<kaldi::BaseFloat> var_stat_vec; std::vector<kaldi::BaseFloat> var_stat_vec;
for (auto it = var_stat.begin(); it != var_stat.end(); it++) { for (auto it = var_stat.begin(); it != var_stat.end(); it++) {
var_stat_vec.push_back(it->as_double()); var_stat_vec.push_back((*it).get<double>());
} }
kaldi::int32 frame_num = uint64_t(value.at("frame_num").as_int64()); kaldi::int32 frame_num = value.get("frame_num").get<int64_t>();
LOG(INFO) << "nframe: " << frame_num; LOG(INFO) << "nframe: " << frame_num;
size_t mean_size = mean_stat_vec.size(); size_t mean_size = mean_stat_vec.size();

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save