Merge pull request #2036 from zh794390558/asr_ol

[server] seperate streaming asr server engine add support onnx
pull/2045/head
YangZhou 3 years ago committed by GitHub
commit f2e64beadc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -7,11 +7,11 @@ host: 0.0.0.0
port: 8090 port: 8090
# The task format in the engin_list is: <speech task>_<engine type> # The task format in the engin_list is: <speech task>_<engine type>
# task choices = ['asr_online'] # task choices = ['asr_online-inference', 'asr_online-onnx']
# protocol = ['websocket'] (only one can be selected). # protocol = ['websocket'] (only one can be selected).
# websocket only support online engine type. # websocket only support online engine type.
protocol: 'websocket' protocol: 'websocket'
engine_list: ['asr_online'] engine_list: ['asr_online-inference']
################################################################################# #################################################################################
@ -19,11 +19,11 @@ engine_list: ['asr_online']
################################################################################# #################################################################################
################################### ASR ######################################### ################################### ASR #########################################
################### speech task: asr; engine_type: online ####################### ################### speech task: asr; engine_type: online-inference #######################
asr_online: asr_online-inference:
model_type: 'deepspeech2online_aishell' model_type: 'deepspeech2online_aishell'
am_model: # the pdmodel file of am static model [optional] am_model: # the pdmodel file of am static model [optional]
am_params: # the pdiparams file of am static model [optional] am_params: # the pdiparams file of am static model [optional]
lang: 'zh' lang: 'zh'
sample_rate: 16000 sample_rate: 16000
cfg_path: cfg_path:
@ -47,3 +47,38 @@ asr_online:
shift_n: 4 # frame shift_n: 4 # frame
window_ms: 20 # ms window_ms: 20 # ms
shift_ms: 10 # ms shift_ms: 10 # ms
################################### ASR #########################################
################### speech task: asr; engine_type: online-onnx #######################
asr_online-onnx:
model_type: 'deepspeech2online_aishell'
am_model: # the pdmodel file of onnx am static model [optional]
am_params: # the pdiparams file of am static model [optional]
lang: 'zh'
sample_rate: 16000
cfg_path:
decode_method:
num_decoding_left_chunks:
force_yes: True
device: 'cpu' # cpu or gpu:id
# https://onnxruntime.ai/docs/api/python/api_summary.html#inferencesession
am_predictor_conf:
device: 'cpu' # set 'gpu:id' or 'cpu'
graph_optimization_level: 0
intra_op_num_threads: 0 # Sets the number of threads used to parallelize the execution within nodes.
inter_op_num_threads: 0 # Sets the number of threads used to parallelize the execution of the graph (across nodes).
log_severity_level: 2 # Log severity level. Applies to session load, initialization, etc. 0:Verbose, 1:Info, 2:Warning. 3:Error, 4:Fatal. Default is 2.
log_verbosity_level: 0 # VLOG level if DEBUG build and session_log_severity_level is 0. Applies to session load, initialization, etc. Default is 0.
chunk_buffer_conf:
frame_duration_ms: 80
shift_ms: 40
sample_rate: 16000
sample_width: 2
window_n: 7 # frame
shift_n: 4 # frame
window_ms: 20 # ms
shift_ms: 10 # ms

@ -4,7 +4,7 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav
# read the wav and pass it to only streaming asr service # read the wav and pass it to only streaming asr service
# If `127.0.0.1` is not accessible, you need to use the actual service IP address. # If `127.0.0.1` is not accessible, you need to use the actual service IP address.
# python3 websocket_client.py --server_ip 127.0.0.1 --port 8290 --wavfile ./zh.wav # python3 websocket_client.py --server_ip 127.0.0.1 --port 8290 --wavfile ./zh.wav
paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8290 --input ./zh.wav paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8090 --input ./zh.wav
# read the wav and call streaming and punc service # read the wav and call streaming and punc service
# If `127.0.0.1` is not accessible, you need to use the actual service IP address. # If `127.0.0.1` is not accessible, you need to use the actual service IP address.

@ -187,7 +187,7 @@ class ASRExecutor(BaseExecutor):
elif "conformer" in model_type or "transformer" in model_type: elif "conformer" in model_type or "transformer" in model_type:
self.config.decode.decoding_method = decode_method self.config.decode.decoding_method = decode_method
if num_decoding_left_chunks: if num_decoding_left_chunks:
assert num_decoding_left_chunks == -1 or num_decoding_left_chunks >= 0, f"num_decoding_left_chunks should be -1 or >=0" assert num_decoding_left_chunks == -1 or num_decoding_left_chunks >= 0, "num_decoding_left_chunks should be -1 or >=0"
self.config.num_decoding_left_chunks = num_decoding_left_chunks self.config.num_decoding_left_chunks = num_decoding_left_chunks
else: else:

@ -220,6 +220,24 @@ asr_static_pretrained_models = {
} }
}, },
"deepspeech2online_aishell-zh-16k": { "deepspeech2online_aishell-zh-16k": {
'1.0.1': {
'url':
'https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_fbank161_ckpt_1.0.1.model.tar.gz',
'md5':
'df5ddeac8b679a470176649ac4b78726',
'cfg_path':
'model.yaml',
'ckpt_path':
'exp/deepspeech2_online/checkpoints/avg_1',
'model':
'exp/deepspeech2_online/checkpoints/avg_1.jit.pdmodel',
'params':
'exp/deepspeech2_online/checkpoints/avg_1.jit.pdiparams',
'lm_url':
'https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm',
'lm_md5':
'29e02312deb2e59b3c8686c7966d4fe3'
},
'1.0.2': { '1.0.2': {
'url': 'url':
'http://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_fbank161_ckpt_1.0.2.model.tar.gz', 'http://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_fbank161_ckpt_1.0.2.model.tar.gz',
@ -235,9 +253,8 @@ asr_static_pretrained_models = {
}, },
} }
asr_onnx_pretrained_models = { asr_onnx_pretrained_models = {
"deepspeech2online_aishell-zh-16k": { "deepspeech2online_aishell-zh-16k": {
'1.0.2': { '1.0.2': {
'url': 'url':
'http://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_fbank161_ckpt_1.0.2.model.tar.gz', 'http://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_fbank161_ckpt_1.0.2.model.tar.gz',

@ -164,9 +164,10 @@ class CommonTaskResource:
try: try:
import_models = '{}_{}_pretrained_models'.format(self.task, import_models = '{}_{}_pretrained_models'.format(self.task,
self.model_format) self.model_format)
print(f"from .pretrained_models import {import_models}")
exec('from .pretrained_models import {}'.format(import_models)) exec('from .pretrained_models import {}'.format(import_models))
models = OrderedDict(locals()[import_models]) models = OrderedDict(locals()[import_models])
except ImportError: except Exception as e:
models = OrderedDict({}) # no models. models = OrderedDict({}) # no models.
finally: finally:
return models return models

@ -1,49 +0,0 @@
# This is the parameter configuration file for PaddleSpeech Serving.
#################################################################################
# SERVER SETTING #
#################################################################################
host: 0.0.0.0
port: 8090
# The task format in the engin_list is: <speech task>_<engine type>
# task choices = ['asr_online', 'tts_online']
# protocol = ['websocket', 'http'] (only one can be selected).
# websocket only support online engine type.
protocol: 'websocket'
engine_list: ['asr_online']
#################################################################################
# ENGINE CONFIG #
#################################################################################
################################### ASR #########################################
################### speech task: asr; engine_type: online #######################
asr_online:
model_type: 'deepspeech2online_aishell'
am_model: # the pdmodel file of am static model [optional]
am_params: # the pdiparams file of am static model [optional]
lang: 'zh'
sample_rate: 16000
cfg_path:
decode_method:
num_decoding_left_chunks:
force_yes: True
device: # cpu or gpu:id
am_predictor_conf:
device: # set 'gpu:id' or 'cpu'
switch_ir_optim: True
glog_info: False # True -> print glog
summary: True # False -> do not show predictor config
chunk_buffer_conf:
frame_duration_ms: 80
shift_ms: 40
sample_rate: 16000
sample_width: 2
window_n: 7 # frame
shift_n: 4 # frame
window_ms: 20 # ms
shift_ms: 10 # ms

@ -0,0 +1,84 @@
# This is the parameter configuration file for PaddleSpeech Serving.
#################################################################################
# SERVER SETTING #
#################################################################################
host: 0.0.0.0
port: 8090
# The task format in the engin_list is: <speech task>_<engine type>
# task choices = ['asr_online-inference', 'asr_online-onnx']
# protocol = ['websocket'] (only one can be selected).
# websocket only support online engine type.
protocol: 'websocket'
engine_list: ['asr_online-inference']
#################################################################################
# ENGINE CONFIG #
#################################################################################
################################### ASR #########################################
################### speech task: asr; engine_type: online-inference #######################
asr_online-inference:
model_type: 'deepspeech2online_aishell'
am_model: # the pdmodel file of am static model [optional]
am_params: # the pdiparams file of am static model [optional]
lang: 'zh'
sample_rate: 16000
cfg_path:
decode_method:
num_decoding_left_chunks:
force_yes: True
device: 'cpu' # cpu or gpu:id
am_predictor_conf:
device: # set 'gpu:id' or 'cpu'
switch_ir_optim: True
glog_info: False # True -> print glog
summary: True # False -> do not show predictor config
chunk_buffer_conf:
frame_duration_ms: 80
shift_ms: 40
sample_rate: 16000
sample_width: 2
window_n: 7 # frame
shift_n: 4 # frame
window_ms: 20 # ms
shift_ms: 10 # ms
################################### ASR #########################################
################### speech task: asr; engine_type: online-onnx #######################
asr_online-onnx:
model_type: 'deepspeech2online_aishell'
am_model: # the pdmodel file of onnx am static model [optional]
am_params: # the pdiparams file of am static model [optional]
lang: 'zh'
sample_rate: 16000
cfg_path:
decode_method:
num_decoding_left_chunks:
force_yes: True
device: 'cpu' # cpu or gpu:id
# https://onnxruntime.ai/docs/api/python/api_summary.html#inferencesession
am_predictor_conf:
device: 'cpu' # set 'gpu:id' or 'cpu'
graph_optimization_level: 0
intra_op_num_threads: 0 # Sets the number of threads used to parallelize the execution within nodes.
inter_op_num_threads: 0 # Sets the number of threads used to parallelize the execution of the graph (across nodes).
log_severity_level: 2 # Log severity level. Applies to session load, initialization, etc. 0:Verbose, 1:Info, 2:Warning. 3:Error, 4:Fatal. Default is 2.
log_verbosity_level: 0 # VLOG level if DEBUG build and session_log_severity_level is 0. Applies to session load, initialization, etc. Default is 0.
chunk_buffer_conf:
frame_duration_ms: 80
shift_ms: 40
sample_rate: 16000
sample_width: 2
window_n: 7 # frame
shift_n: 4 # frame
window_ms: 20 # ms
shift_ms: 10 # ms

@ -0,0 +1,13 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

@ -0,0 +1,530 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from typing import ByteString
from typing import Optional
import numpy as np
import paddle
from numpy import float32
from yacs.config import CfgNode
from paddlespeech.cli.asr.infer import ASRExecutor
from paddlespeech.cli.log import logger
from paddlespeech.cli.utils import MODEL_HOME
from paddlespeech.resource import CommonTaskResource
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.modules.ctc import CTCDecoder
from paddlespeech.s2t.transform.transformation import Transformation
from paddlespeech.s2t.utils.utility import UpdateConfig
from paddlespeech.server.engine.base_engine import BaseEngine
from paddlespeech.server.utils import onnx_infer
__all__ = ['PaddleASRConnectionHanddler', 'ASRServerExecutor', 'ASREngine']
# ASR server connection process class
class PaddleASRConnectionHanddler:
def __init__(self, asr_engine):
"""Init a Paddle ASR Connection Handler instance
Args:
asr_engine (ASREngine): the global asr engine
"""
super().__init__()
logger.info(
"create an paddle asr connection handler to process the websocket connection"
)
self.config = asr_engine.config # server config
self.model_config = asr_engine.executor.config
self.asr_engine = asr_engine
# model_type, sample_rate and text_feature is shared for deepspeech2 and conformer
self.model_type = self.asr_engine.executor.model_type
self.sample_rate = self.asr_engine.executor.sample_rate
# tokens to text
self.text_feature = self.asr_engine.executor.text_feature
# extract feat, new only fbank in conformer model
self.preprocess_conf = self.model_config.preprocess_config
self.preprocess_args = {"train": False}
self.preprocessing = Transformation(self.preprocess_conf)
# frame window and frame shift, in samples unit
self.win_length = self.preprocess_conf.process[0]['win_length']
self.n_shift = self.preprocess_conf.process[0]['n_shift']
assert self.preprocess_conf.process[0]['fs'] == self.sample_rate, (
self.sample_rate, self.preprocess_conf.process[0]['fs'])
self.frame_shift_in_ms = int(
self.n_shift / self.preprocess_conf.process[0]['fs'] * 1000)
self.continuous_decoding = self.config.get("continuous_decoding", False)
self.init_decoder()
self.reset()
def init_decoder(self):
if "deepspeech2" in self.model_type:
assert self.continuous_decoding is False, "ds2 model not support endpoint"
self.am_predictor = self.asr_engine.executor.am_predictor
self.decoder = CTCDecoder(
odim=self.model_config.output_dim, # <blank> is in vocab
enc_n_units=self.model_config.rnn_layer_size * 2,
blank_id=self.model_config.blank_id,
dropout_rate=0.0,
reduction=True, # sum
batch_average=True, # sum / batch_size
grad_norm_type=self.model_config.get('ctc_grad_norm_type',
None))
cfg = self.model_config.decode
decode_batch_size = 1 # for online
self.decoder.init_decoder(
decode_batch_size, self.text_feature.vocab_list,
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
cfg.num_proc_bsearch)
else:
raise ValueError(f"Not supported: {self.model_type}")
def model_reset(self):
# cache for audio and feat
self.remained_wav = None
self.cached_feat = None
def output_reset(self):
## outputs
# partial/ending decoding results
self.result_transcripts = ['']
def reset_continuous_decoding(self):
"""
when in continous decoding, reset for next utterance.
"""
self.global_frame_offset = self.num_frames
self.model_reset()
def reset(self):
if "deepspeech2" in self.model_type:
# for deepspeech2
# init state
self.chunk_state_h_box = np.zeros(
(self.model_config.num_rnn_layers, 1,
self.model_config.rnn_layer_size),
dtype=float32)
self.chunk_state_c_box = np.zeros(
(self.model_config.num_rnn_layers, 1,
self.model_config.rnn_layer_size),
dtype=float32)
self.decoder.reset_decoder(batch_size=1)
else:
raise NotImplementedError(f"{self.model_type} not support.")
self.device = None
## common
# global sample and frame step
self.num_samples = 0
self.global_frame_offset = 0
# frame step of cur utterance
self.num_frames = 0
## endpoint
self.endpoint_state = False # True for detect endpoint
## conformer
self.model_reset()
## outputs
self.output_reset()
def extract_feat(self, samples: ByteString):
logger.info("Online ASR extract the feat")
samples = np.frombuffer(samples, dtype=np.int16)
assert samples.ndim == 1
self.num_samples += samples.shape[0]
logger.info(
f"This package receive {samples.shape[0]} pcm data. Global samples:{self.num_samples}"
)
# self.reamined_wav stores all the samples,
# include the original remained_wav and this package samples
if self.remained_wav is None:
self.remained_wav = samples
else:
assert self.remained_wav.ndim == 1 # (T,)
self.remained_wav = np.concatenate([self.remained_wav, samples])
logger.info(
f"The concatenation of remain and now audio samples length is: {self.remained_wav.shape}"
)
if len(self.remained_wav) < self.win_length:
# samples not enough for feature window
return 0
# fbank
x_chunk = self.preprocessing(self.remained_wav, **self.preprocess_args)
x_chunk = paddle.to_tensor(x_chunk, dtype="float32").unsqueeze(axis=0)
# feature cache
if self.cached_feat is None:
self.cached_feat = x_chunk
else:
assert (len(x_chunk.shape) == 3) # (B,T,D)
assert (len(self.cached_feat.shape) == 3) # (B,T,D)
self.cached_feat = paddle.concat(
[self.cached_feat, x_chunk], axis=1)
# set the feat device
if self.device is None:
self.device = self.cached_feat.place
# cur frame step
num_frames = x_chunk.shape[1]
# global frame step
self.num_frames += num_frames
# update remained wav
self.remained_wav = self.remained_wav[self.n_shift * num_frames:]
logger.info(
f"process the audio feature success, the cached feat shape: {self.cached_feat.shape}"
)
logger.info(
f"After extract feat, the cached remain the audio samples: {self.remained_wav.shape}"
)
logger.info(f"global samples: {self.num_samples}")
logger.info(f"global frames: {self.num_frames}")
def decode(self, is_finished=False):
"""advance decoding
Args:
is_finished (bool, optional): Is last frame or not. Defaults to False.
Returns:
None:
"""
if "deepspeech2" in self.model_type:
decoding_chunk_size = 1 # decoding chunk size = 1. int decoding frame unit
context = 7 # context=7, in audio frame unit
subsampling = 4 # subsampling=4, in audio frame unit
cached_feature_num = context - subsampling
# decoding window for model, in audio frame unit
decoding_window = (decoding_chunk_size - 1) * subsampling + context
# decoding stride for model, in audio frame unit
stride = subsampling * decoding_chunk_size
if self.cached_feat is None:
logger.info("no audio feat, please input more pcm data")
return
num_frames = self.cached_feat.shape[1]
logger.info(
f"Required decoding window {decoding_window} frames, and the connection has {num_frames} frames"
)
# the cached feat must be larger decoding_window
if num_frames < decoding_window and not is_finished:
logger.info(
f"frame feat num is less than {decoding_window}, please input more pcm data"
)
return None, None
# if is_finished=True, we need at least context frames
if num_frames < context:
logger.info(
"flast {num_frames} is less than context {context} frames, and we cannot do model forward"
)
return None, None
logger.info("start to do model forward")
# num_frames - context + 1 ensure that current frame can get context window
if is_finished:
# if get the finished chunk, we need process the last context
left_frames = context
else:
# we only process decoding_window frames for one chunk
left_frames = decoding_window
end = None
for cur in range(0, num_frames - left_frames + 1, stride):
end = min(cur + decoding_window, num_frames)
# extract the audio
x_chunk = self.cached_feat[:, cur:end, :].numpy()
x_chunk_lens = np.array([x_chunk.shape[1]])
trans_best = self.decode_one_chunk(x_chunk, x_chunk_lens)
self.result_transcripts = [trans_best]
# update feat cache
self.cached_feat = self.cached_feat[:, end - cached_feature_num:, :]
# return trans_best[0]
else:
raise Exception(f"{self.model_type} not support paddleinference.")
@paddle.no_grad()
def decode_one_chunk(self, x_chunk, x_chunk_lens):
"""forward one chunk frames
Args:
x_chunk (np.ndarray): (B,T,D), audio frames.
x_chunk_lens ([type]): (B,), audio frame lens
Returns:
logprob: poster probability.
"""
logger.info("start to decoce one chunk for deepspeech2")
# state_c, state_h, audio_lens, audio
# 'chunk_state_c_box', 'chunk_state_h_box', 'audio_chunk_lens', 'audio_chunk'
input_names = [n.name for n in self.am_predictor.get_inputs()]
logger.info(f"ort inputs: {input_names}")
# 'softmax_0.tmp_0', 'tmp_5', 'concat_0.tmp_0', 'concat_1.tmp_0'
# audio, audio_lens, state_h, state_c
output_names = [n.name for n in self.am_predictor.get_outputs()]
logger.info(f"ort outpus: {output_names}")
assert (len(input_names) == len(output_names))
assert isinstance(input_names[0], str)
input_datas = [
self.chunk_state_c_box, self.chunk_state_h_box, x_chunk_lens,
x_chunk
]
feeds = dict(zip(input_names, input_datas))
outputs = self.am_predictor.run([*output_names], {**feeds})
output_chunk_probs, output_chunk_lens, self.chunk_state_h_box, self.chunk_state_c_box = outputs
self.decoder.next(output_chunk_probs, output_chunk_lens)
trans_best, trans_beam = self.decoder.decode()
logger.info(f"decode one best result for deepspeech2: {trans_best[0]}")
return trans_best[0]
def get_result(self):
"""return partial/ending asr result.
Returns:
str: one best result of partial/ending.
"""
if len(self.result_transcripts) > 0:
return self.result_transcripts[0]
else:
return ''
def get_word_time_stamp(self):
return []
@paddle.no_grad()
def rescoring(self):
...
class ASRServerExecutor(ASRExecutor):
def __init__(self):
super().__init__()
self.task_resource = CommonTaskResource(
task='asr', model_format='onnx', inference_mode='online')
def update_config(self) -> None:
if "deepspeech2" in self.model_type:
with UpdateConfig(self.config):
# download lm
self.config.decode.lang_model_path = os.path.join(
MODEL_HOME, 'language_model',
self.config.decode.lang_model_path)
lm_url = self.task_resource.res_dict['lm_url']
lm_md5 = self.task_resource.res_dict['lm_md5']
logger.info(f"Start to load language model {lm_url}")
self.download_lm(
lm_url,
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
else:
raise NotImplementedError(
f"{self.model_type} not support paddleinference.")
def init_model(self) -> None:
if "deepspeech2" in self.model_type:
# AM predictor
logger.info("ASR engine start to init the am predictor")
self.am_predictor = onnx_infer.get_sess(
model_path=self.am_model, sess_conf=self.am_predictor_conf)
else:
raise NotImplementedError(
f"{self.model_type} not support paddleinference.")
def _init_from_path(self,
model_type: str=None,
am_model: Optional[os.PathLike]=None,
am_params: Optional[os.PathLike]=None,
lang: str='zh',
sample_rate: int=16000,
cfg_path: Optional[os.PathLike]=None,
decode_method: str='attention_rescoring',
num_decoding_left_chunks: int=-1,
am_predictor_conf: dict=None):
"""
Init model and other resources from a specific path.
"""
if not model_type or not lang or not sample_rate:
logger.error(
"The model type or lang or sample rate is None, please input an valid server parameter yaml"
)
return False
assert am_params is None, "am_params not used in onnx engine"
self.model_type = model_type
self.sample_rate = sample_rate
self.decode_method = decode_method
self.num_decoding_left_chunks = num_decoding_left_chunks
# conf for paddleinference predictor or onnx
self.am_predictor_conf = am_predictor_conf
logger.info(f"model_type: {self.model_type}")
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
tag = model_type + '-' + lang + '-' + sample_rate_str
self.task_resource.set_task_model(model_tag=tag)
if cfg_path is None:
self.res_path = self.task_resource.res_dir
self.cfg_path = os.path.join(
self.res_path, self.task_resource.res_dict['cfg_path'])
else:
self.cfg_path = os.path.abspath(cfg_path)
self.res_path = os.path.dirname(
os.path.dirname(os.path.abspath(self.cfg_path)))
self.am_model = os.path.join(self.res_path, self.task_resource.res_dict[
'onnx_model']) if am_model is None else os.path.abspath(am_model)
# self.am_params = os.path.join(
# self.res_path, self.task_resource.res_dict[
# 'params']) if am_params is None else os.path.abspath(am_params)
logger.info("Load the pretrained model:")
logger.info(f" tag = {tag}")
logger.info(f" res_path: {self.res_path}")
logger.info(f" cfg path: {self.cfg_path}")
logger.info(f" am_model path: {self.am_model}")
# logger.info(f" am_params path: {self.am_params}")
#Init body.
self.config = CfgNode(new_allowed=True)
self.config.merge_from_file(self.cfg_path)
if self.config.spm_model_prefix:
self.config.spm_model_prefix = os.path.join(
self.res_path, self.config.spm_model_prefix)
logger.info(f"spm model path: {self.config.spm_model_prefix}")
self.vocab = self.config.vocab_filepath
self.text_feature = TextFeaturizer(
unit_type=self.config.unit_type,
vocab=self.config.vocab_filepath,
spm_model_prefix=self.config.spm_model_prefix)
self.update_config()
# AM predictor
self.init_model()
logger.info(f"create the {model_type} model success")
return True
class ASREngine(BaseEngine):
"""ASR model resource
Args:
metaclass: Defaults to Singleton.
"""
def __init__(self):
super(ASREngine, self).__init__()
def init_model(self) -> bool:
if not self.executor._init_from_path(
model_type=self.config.model_type,
am_model=self.config.am_model,
am_params=self.config.am_params,
lang=self.config.lang,
sample_rate=self.config.sample_rate,
cfg_path=self.config.cfg_path,
decode_method=self.config.decode_method,
num_decoding_left_chunks=self.config.num_decoding_left_chunks,
am_predictor_conf=self.config.am_predictor_conf):
return False
return True
def init(self, config: dict) -> bool:
"""init engine resource
Args:
config_file (str): config file
Returns:
bool: init failed or success
"""
self.config = config
self.executor = ASRServerExecutor()
try:
self.device = self.config.get("device", paddle.get_device())
paddle.set_device(self.device)
except BaseException as e:
logger.error(
f"Set device failed, please check if device '{self.device}' is already used and the parameter 'device' in the yaml file"
)
logger.error(
"If all GPU or XPU is used, you can set the server to 'cpu'")
sys.exit(-1)
logger.info(f"paddlespeech_server set the device: {self.device}")
if not self.init_model():
logger.error(
"Init the ASR server occurs error, please check the server configuration yaml"
)
return False
logger.info("Initialize ASR server engine successfully.")
return True
def new_handler(self):
"""New handler from model.
Returns:
PaddleASRConnectionHanddler: asr handler instance
"""
return PaddleASRConnectionHanddler(self)
def preprocess(self, *args, **kwargs):
raise NotImplementedError("Online not using this.")
def run(self, *args, **kwargs):
raise NotImplementedError("Online not using this.")
def postprocess(self):
raise NotImplementedError("Online not using this.")

@ -0,0 +1,13 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

@ -0,0 +1,545 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from typing import ByteString
from typing import Optional
import numpy as np
import paddle
from numpy import float32
from yacs.config import CfgNode
from paddlespeech.cli.asr.infer import ASRExecutor
from paddlespeech.cli.log import logger
from paddlespeech.cli.utils import MODEL_HOME
from paddlespeech.resource import CommonTaskResource
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.modules.ctc import CTCDecoder
from paddlespeech.s2t.transform.transformation import Transformation
from paddlespeech.s2t.utils.utility import UpdateConfig
from paddlespeech.server.engine.base_engine import BaseEngine
from paddlespeech.server.utils.paddle_predictor import init_predictor
__all__ = ['PaddleASRConnectionHanddler', 'ASRServerExecutor', 'ASREngine']
# ASR server connection process class
class PaddleASRConnectionHanddler:
def __init__(self, asr_engine):
"""Init a Paddle ASR Connection Handler instance
Args:
asr_engine (ASREngine): the global asr engine
"""
super().__init__()
logger.info(
"create an paddle asr connection handler to process the websocket connection"
)
self.config = asr_engine.config # server config
self.model_config = asr_engine.executor.config
self.asr_engine = asr_engine
# model_type, sample_rate and text_feature is shared for deepspeech2 and conformer
self.model_type = self.asr_engine.executor.model_type
self.sample_rate = self.asr_engine.executor.sample_rate
# tokens to text
self.text_feature = self.asr_engine.executor.text_feature
# extract feat, new only fbank in conformer model
self.preprocess_conf = self.model_config.preprocess_config
self.preprocess_args = {"train": False}
self.preprocessing = Transformation(self.preprocess_conf)
# frame window and frame shift, in samples unit
self.win_length = self.preprocess_conf.process[0]['win_length']
self.n_shift = self.preprocess_conf.process[0]['n_shift']
assert self.preprocess_conf.process[0]['fs'] == self.sample_rate, (
self.sample_rate, self.preprocess_conf.process[0]['fs'])
self.frame_shift_in_ms = int(
self.n_shift / self.preprocess_conf.process[0]['fs'] * 1000)
self.continuous_decoding = self.config.get("continuous_decoding", False)
self.init_decoder()
self.reset()
def init_decoder(self):
if "deepspeech2" in self.model_type:
assert self.continuous_decoding is False, "ds2 model not support endpoint"
self.am_predictor = self.asr_engine.executor.am_predictor
self.decoder = CTCDecoder(
odim=self.model_config.output_dim, # <blank> is in vocab
enc_n_units=self.model_config.rnn_layer_size * 2,
blank_id=self.model_config.blank_id,
dropout_rate=0.0,
reduction=True, # sum
batch_average=True, # sum / batch_size
grad_norm_type=self.model_config.get('ctc_grad_norm_type',
None))
cfg = self.model_config.decode
decode_batch_size = 1 # for online
self.decoder.init_decoder(
decode_batch_size, self.text_feature.vocab_list,
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
cfg.num_proc_bsearch)
else:
raise ValueError(f"Not supported: {self.model_type}")
def model_reset(self):
# cache for audio and feat
self.remained_wav = None
self.cached_feat = None
def output_reset(self):
## outputs
# partial/ending decoding results
self.result_transcripts = ['']
def reset_continuous_decoding(self):
"""
when in continous decoding, reset for next utterance.
"""
self.global_frame_offset = self.num_frames
self.model_reset()
def reset(self):
if "deepspeech2" in self.model_type:
# for deepspeech2
# init state
self.chunk_state_h_box = np.zeros(
(self.model_config.num_rnn_layers, 1,
self.model_config.rnn_layer_size),
dtype=float32)
self.chunk_state_c_box = np.zeros(
(self.model_config.num_rnn_layers, 1,
self.model_config.rnn_layer_size),
dtype=float32)
self.decoder.reset_decoder(batch_size=1)
else:
raise NotImplementedError(f"{self.model_type} not support.")
self.device = None
## common
# global sample and frame step
self.num_samples = 0
self.global_frame_offset = 0
# frame step of cur utterance
self.num_frames = 0
## endpoint
self.endpoint_state = False # True for detect endpoint
## conformer
self.model_reset()
## outputs
self.output_reset()
def extract_feat(self, samples: ByteString):
logger.info("Online ASR extract the feat")
samples = np.frombuffer(samples, dtype=np.int16)
assert samples.ndim == 1
self.num_samples += samples.shape[0]
logger.info(
f"This package receive {samples.shape[0]} pcm data. Global samples:{self.num_samples}"
)
# self.reamined_wav stores all the samples,
# include the original remained_wav and this package samples
if self.remained_wav is None:
self.remained_wav = samples
else:
assert self.remained_wav.ndim == 1 # (T,)
self.remained_wav = np.concatenate([self.remained_wav, samples])
logger.info(
f"The concatenation of remain and now audio samples length is: {self.remained_wav.shape}"
)
if len(self.remained_wav) < self.win_length:
# samples not enough for feature window
return 0
# fbank
x_chunk = self.preprocessing(self.remained_wav, **self.preprocess_args)
x_chunk = paddle.to_tensor(x_chunk, dtype="float32").unsqueeze(axis=0)
# feature cache
if self.cached_feat is None:
self.cached_feat = x_chunk
else:
assert (len(x_chunk.shape) == 3) # (B,T,D)
assert (len(self.cached_feat.shape) == 3) # (B,T,D)
self.cached_feat = paddle.concat(
[self.cached_feat, x_chunk], axis=1)
# set the feat device
if self.device is None:
self.device = self.cached_feat.place
# cur frame step
num_frames = x_chunk.shape[1]
# global frame step
self.num_frames += num_frames
# update remained wav
self.remained_wav = self.remained_wav[self.n_shift * num_frames:]
logger.info(
f"process the audio feature success, the cached feat shape: {self.cached_feat.shape}"
)
logger.info(
f"After extract feat, the cached remain the audio samples: {self.remained_wav.shape}"
)
logger.info(f"global samples: {self.num_samples}")
logger.info(f"global frames: {self.num_frames}")
def decode(self, is_finished=False):
"""advance decoding
Args:
is_finished (bool, optional): Is last frame or not. Defaults to False.
Returns:
None:
"""
if "deepspeech2" in self.model_type:
decoding_chunk_size = 1 # decoding chunk size = 1. int decoding frame unit
context = 7 # context=7, in audio frame unit
subsampling = 4 # subsampling=4, in audio frame unit
cached_feature_num = context - subsampling
# decoding window for model, in audio frame unit
decoding_window = (decoding_chunk_size - 1) * subsampling + context
# decoding stride for model, in audio frame unit
stride = subsampling * decoding_chunk_size
if self.cached_feat is None:
logger.info("no audio feat, please input more pcm data")
return
num_frames = self.cached_feat.shape[1]
logger.info(
f"Required decoding window {decoding_window} frames, and the connection has {num_frames} frames"
)
# the cached feat must be larger decoding_window
if num_frames < decoding_window and not is_finished:
logger.info(
f"frame feat num is less than {decoding_window}, please input more pcm data"
)
return None, None
# if is_finished=True, we need at least context frames
if num_frames < context:
logger.info(
"flast {num_frames} is less than context {context} frames, and we cannot do model forward"
)
return None, None
logger.info("start to do model forward")
# num_frames - context + 1 ensure that current frame can get context window
if is_finished:
# if get the finished chunk, we need process the last context
left_frames = context
else:
# we only process decoding_window frames for one chunk
left_frames = decoding_window
end = None
for cur in range(0, num_frames - left_frames + 1, stride):
end = min(cur + decoding_window, num_frames)
# extract the audio
x_chunk = self.cached_feat[:, cur:end, :].numpy()
x_chunk_lens = np.array([x_chunk.shape[1]])
trans_best = self.decode_one_chunk(x_chunk, x_chunk_lens)
self.result_transcripts = [trans_best]
# update feat cache
self.cached_feat = self.cached_feat[:, end - cached_feature_num:, :]
# return trans_best[0]
else:
raise Exception(f"{self.model_type} not support paddleinference.")
@paddle.no_grad()
def decode_one_chunk(self, x_chunk, x_chunk_lens):
"""forward one chunk frames
Args:
x_chunk (np.ndarray): (B,T,D), audio frames.
x_chunk_lens ([type]): (B,), audio frame lens
Returns:
logprob: poster probability.
"""
logger.info("start to decoce one chunk for deepspeech2")
input_names = self.am_predictor.get_input_names()
audio_handle = self.am_predictor.get_input_handle(input_names[0])
audio_len_handle = self.am_predictor.get_input_handle(input_names[1])
h_box_handle = self.am_predictor.get_input_handle(input_names[2])
c_box_handle = self.am_predictor.get_input_handle(input_names[3])
audio_handle.reshape(x_chunk.shape)
audio_handle.copy_from_cpu(x_chunk)
audio_len_handle.reshape(x_chunk_lens.shape)
audio_len_handle.copy_from_cpu(x_chunk_lens)
h_box_handle.reshape(self.chunk_state_h_box.shape)
h_box_handle.copy_from_cpu(self.chunk_state_h_box)
c_box_handle.reshape(self.chunk_state_c_box.shape)
c_box_handle.copy_from_cpu(self.chunk_state_c_box)
output_names = self.am_predictor.get_output_names()
output_handle = self.am_predictor.get_output_handle(output_names[0])
output_lens_handle = self.am_predictor.get_output_handle(
output_names[1])
output_state_h_handle = self.am_predictor.get_output_handle(
output_names[2])
output_state_c_handle = self.am_predictor.get_output_handle(
output_names[3])
self.am_predictor.run()
output_chunk_probs = output_handle.copy_to_cpu()
output_chunk_lens = output_lens_handle.copy_to_cpu()
self.chunk_state_h_box = output_state_h_handle.copy_to_cpu()
self.chunk_state_c_box = output_state_c_handle.copy_to_cpu()
self.decoder.next(output_chunk_probs, output_chunk_lens)
trans_best, trans_beam = self.decoder.decode()
logger.info(f"decode one best result for deepspeech2: {trans_best[0]}")
return trans_best[0]
def get_result(self):
"""return partial/ending asr result.
Returns:
str: one best result of partial/ending.
"""
if len(self.result_transcripts) > 0:
return self.result_transcripts[0]
else:
return ''
def get_word_time_stamp(self):
return []
@paddle.no_grad()
def rescoring(self):
...
class ASRServerExecutor(ASRExecutor):
def __init__(self):
super().__init__()
self.task_resource = CommonTaskResource(
task='asr', model_format='static', inference_mode='online')
def update_config(self) -> None:
if "deepspeech2" in self.model_type:
with UpdateConfig(self.config):
# download lm
self.config.decode.lang_model_path = os.path.join(
MODEL_HOME, 'language_model',
self.config.decode.lang_model_path)
lm_url = self.task_resource.res_dict['lm_url']
lm_md5 = self.task_resource.res_dict['lm_md5']
logger.info(f"Start to load language model {lm_url}")
self.download_lm(
lm_url,
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
else:
raise NotImplementedError(
f"{self.model_type} not support paddleinference.")
def init_model(self) -> None:
if "deepspeech2" in self.model_type:
# AM predictor
logger.info("ASR engine start to init the am predictor")
self.am_predictor = init_predictor(
model_file=self.am_model,
params_file=self.am_params,
predictor_conf=self.am_predictor_conf)
else:
raise NotImplementedError(
f"{self.model_type} not support paddleinference.")
def _init_from_path(self,
model_type: str=None,
am_model: Optional[os.PathLike]=None,
am_params: Optional[os.PathLike]=None,
lang: str='zh',
sample_rate: int=16000,
cfg_path: Optional[os.PathLike]=None,
decode_method: str='attention_rescoring',
num_decoding_left_chunks: int=-1,
am_predictor_conf: dict=None):
"""
Init model and other resources from a specific path.
"""
if not model_type or not lang or not sample_rate:
logger.error(
"The model type or lang or sample rate is None, please input an valid server parameter yaml"
)
return False
self.model_type = model_type
self.sample_rate = sample_rate
self.decode_method = decode_method
self.num_decoding_left_chunks = num_decoding_left_chunks
# conf for paddleinference predictor or onnx
self.am_predictor_conf = am_predictor_conf
logger.info(f"model_type: {self.model_type}")
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
tag = model_type + '-' + lang + '-' + sample_rate_str
self.task_resource.set_task_model(model_tag=tag)
if cfg_path is None or am_model is None or am_params is None:
self.res_path = self.task_resource.res_dir
self.cfg_path = os.path.join(
self.res_path, self.task_resource.res_dict['cfg_path'])
self.am_model = os.path.join(self.res_path,
self.task_resource.res_dict['model'])
self.am_params = os.path.join(self.res_path,
self.task_resource.res_dict['params'])
else:
self.cfg_path = os.path.abspath(cfg_path)
self.am_model = os.path.abspath(am_model)
self.am_params = os.path.abspath(am_params)
self.res_path = os.path.dirname(
os.path.dirname(os.path.abspath(self.cfg_path)))
logger.info("Load the pretrained model:")
logger.info(f" tag = {tag}")
logger.info(f" res_path: {self.res_path}")
logger.info(f" cfg path: {self.cfg_path}")
logger.info(f" am_model path: {self.am_model}")
logger.info(f" am_params path: {self.am_params}")
#Init body.
self.config = CfgNode(new_allowed=True)
self.config.merge_from_file(self.cfg_path)
if self.config.spm_model_prefix:
self.config.spm_model_prefix = os.path.join(
self.res_path, self.config.spm_model_prefix)
logger.info(f"spm model path: {self.config.spm_model_prefix}")
self.vocab = self.config.vocab_filepath
self.text_feature = TextFeaturizer(
unit_type=self.config.unit_type,
vocab=self.config.vocab_filepath,
spm_model_prefix=self.config.spm_model_prefix)
self.update_config()
# AM predictor
self.init_model()
logger.info(f"create the {model_type} model success")
return True
class ASREngine(BaseEngine):
"""ASR model resource
Args:
metaclass: Defaults to Singleton.
"""
def __init__(self):
super(ASREngine, self).__init__()
def init_model(self) -> bool:
if not self.executor._init_from_path(
model_type=self.config.model_type,
am_model=self.config.am_model,
am_params=self.config.am_params,
lang=self.config.lang,
sample_rate=self.config.sample_rate,
cfg_path=self.config.cfg_path,
decode_method=self.config.decode_method,
num_decoding_left_chunks=self.config.num_decoding_left_chunks,
am_predictor_conf=self.config.am_predictor_conf):
return False
return True
def init(self, config: dict) -> bool:
"""init engine resource
Args:
config_file (str): config file
Returns:
bool: init failed or success
"""
self.config = config
self.executor = ASRServerExecutor()
try:
self.device = self.config.get("device", paddle.get_device())
paddle.set_device(self.device)
except BaseException as e:
logger.error(
f"Set device failed, please check if device '{self.device}' is already used and the parameter 'device' in the yaml file"
)
logger.error(
"If all GPU or XPU is used, you can set the server to 'cpu'")
sys.exit(-1)
logger.info(f"paddlespeech_server set the device: {self.device}")
if not self.init_model():
logger.error(
"Init the ASR server occurs error, please check the server configuration yaml"
)
return False
logger.info("Initialize ASR server engine successfully.")
return True
def new_handler(self):
"""New handler from model.
Returns:
PaddleASRConnectionHanddler: asr handler instance
"""
return PaddleASRConnectionHanddler(self)
def preprocess(self, *args, **kwargs):
raise NotImplementedError("Online not using this.")
def run(self, *args, **kwargs):
raise NotImplementedError("Online not using this.")
def postprocess(self):
raise NotImplementedError("Online not using this.")

@ -0,0 +1,13 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

@ -121,13 +121,13 @@ class PaddleASRConnectionHanddler:
raise ValueError(f"Not supported: {self.model_type}") raise ValueError(f"Not supported: {self.model_type}")
def model_reset(self): def model_reset(self):
if "deepspeech2" in self.model_type:
return
# cache for audio and feat # cache for audio and feat
self.remained_wav = None self.remained_wav = None
self.cached_feat = None self.cached_feat = None
if "deepspeech2" in self.model_type:
return
## conformer ## conformer
# cache for conformer online # cache for conformer online
self.subsampling_cache = None self.subsampling_cache = None
@ -697,6 +697,66 @@ class ASRServerExecutor(ASRExecutor):
self.task_resource = CommonTaskResource( self.task_resource = CommonTaskResource(
task='asr', model_format='dynamic', inference_mode='online') task='asr', model_format='dynamic', inference_mode='online')
def update_config(self) -> None:
if "deepspeech2" in self.model_type:
with UpdateConfig(self.config):
# download lm
self.config.decode.lang_model_path = os.path.join(
MODEL_HOME, 'language_model',
self.config.decode.lang_model_path)
lm_url = self.task_resource.res_dict['lm_url']
lm_md5 = self.task_resource.res_dict['lm_md5']
logger.info(f"Start to load language model {lm_url}")
self.download_lm(
lm_url,
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
elif "conformer" in self.model_type or "transformer" in self.model_type:
with UpdateConfig(self.config):
logger.info("start to create the stream conformer asr engine")
# update the decoding method
if self.decode_method:
self.config.decode.decoding_method = self.decode_method
# update num_decoding_left_chunks
if self.num_decoding_left_chunks:
assert self.num_decoding_left_chunks == -1 or self.num_decoding_left_chunks >= 0, "num_decoding_left_chunks should be -1 or >=0"
self.config.decode.num_decoding_left_chunks = self.num_decoding_left_chunks
# we only support ctc_prefix_beam_search and attention_rescoring dedoding method
# Generally we set the decoding_method to attention_rescoring
if self.config.decode.decoding_method not in [
"ctc_prefix_beam_search", "attention_rescoring"
]:
logger.info(
"we set the decoding_method to attention_rescoring")
self.config.decode.decoding_method = "attention_rescoring"
assert self.config.decode.decoding_method in [
"ctc_prefix_beam_search", "attention_rescoring"
], f"we only support ctc_prefix_beam_search and attention_rescoring dedoding method, current decoding method is {self.config.decode.decoding_method}"
else:
raise Exception(f"not support: {self.model_type}")
def init_model(self) -> None:
if "deepspeech2" in self.model_type:
# AM predictor
logger.info("ASR engine start to init the am predictor")
self.am_predictor = init_predictor(
model_file=self.am_model,
params_file=self.am_params,
predictor_conf=self.am_predictor_conf)
elif "conformer" in self.model_type or "transformer" in self.model_type:
# load model
# model_type: {model_name}_{dataset}
model_name = self.model_type[:self.model_type.rindex('_')]
logger.info(f"model name: {model_name}")
model_class = self.task_resource.get_model_class(model_name)
model = model_class.from_config(self.config)
self.model = model
self.model.set_state_dict(paddle.load(self.am_model))
self.model.eval()
else:
raise Exception(f"not support: {self.model_type}")
def _init_from_path(self, def _init_from_path(self,
model_type: str=None, model_type: str=None,
am_model: Optional[os.PathLike]=None, am_model: Optional[os.PathLike]=None,
@ -718,6 +778,10 @@ class ASRServerExecutor(ASRExecutor):
self.model_type = model_type self.model_type = model_type
self.sample_rate = sample_rate self.sample_rate = sample_rate
self.decode_method = decode_method
self.num_decoding_left_chunks = num_decoding_left_chunks
# conf for paddleinference predictor or onnx
self.am_predictor_conf = am_predictor_conf
logger.info(f"model_type: {self.model_type}") logger.info(f"model_type: {self.model_type}")
sample_rate_str = '16k' if sample_rate == 16000 else '8k' sample_rate_str = '16k' if sample_rate == 16000 else '8k'
@ -763,63 +827,10 @@ class ASRServerExecutor(ASRExecutor):
vocab=self.config.vocab_filepath, vocab=self.config.vocab_filepath,
spm_model_prefix=self.config.spm_model_prefix) spm_model_prefix=self.config.spm_model_prefix)
if "deepspeech2" in model_type: self.update_config()
with UpdateConfig(self.config):
# download lm
self.config.decode.lang_model_path = os.path.join(
MODEL_HOME, 'language_model',
self.config.decode.lang_model_path)
lm_url = self.task_resource.res_dict['lm_url'] # AM predictor
lm_md5 = self.task_resource.res_dict['lm_md5'] self.init_model()
logger.info(f"Start to load language model {lm_url}")
self.download_lm(
lm_url,
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
# AM predictor
logger.info("ASR engine start to init the am predictor")
self.am_predictor_conf = am_predictor_conf
self.am_predictor = init_predictor(
model_file=self.am_model,
params_file=self.am_params,
predictor_conf=self.am_predictor_conf)
elif "conformer" in model_type or "transformer" in model_type:
with UpdateConfig(self.config):
logger.info("start to create the stream conformer asr engine")
# update the decoding method
if decode_method:
self.config.decode.decoding_method = decode_method
# update num_decoding_left_chunks
if num_decoding_left_chunks:
assert num_decoding_left_chunks == -1 or num_decoding_left_chunks >= 0, f"num_decoding_left_chunks should be -1 or >=0"
self.config.decode.num_decoding_left_chunks = num_decoding_left_chunks
# we only support ctc_prefix_beam_search and attention_rescoring dedoding method
# Generally we set the decoding_method to attention_rescoring
if self.config.decode.decoding_method not in [
"ctc_prefix_beam_search", "attention_rescoring"
]:
logger.info(
"we set the decoding_method to attention_rescoring")
self.config.decode.decoding_method = "attention_rescoring"
assert self.config.decode.decoding_method in [
"ctc_prefix_beam_search", "attention_rescoring"
], f"we only support ctc_prefix_beam_search and attention_rescoring dedoding method, current decoding method is {self.config.decode.decoding_method}"
# load model
model_name = model_type[:model_type.rindex(
'_')] # model_type: {model_name}_{dataset}
logger.info(f"model name: {model_name}")
model_class = self.task_resource.get_model_class(model_name)
model = model_class.from_config(self.config)
self.model = model
self.model.set_state_dict(paddle.load(self.am_model))
self.model.eval()
else:
raise Exception(f"not support: {model_type}")
logger.info(f"create the {model_type} model success") logger.info(f"create the {model_type} model success")
return True return True
@ -834,7 +845,20 @@ class ASREngine(BaseEngine):
def __init__(self): def __init__(self):
super(ASREngine, self).__init__() super(ASREngine, self).__init__()
logger.info("create the online asr engine resource instance")
def init_model(self) -> bool:
if not self.executor._init_from_path(
model_type=self.config.model_type,
am_model=self.config.am_model,
am_params=self.config.am_params,
lang=self.config.lang,
sample_rate=self.config.sample_rate,
cfg_path=self.config.cfg_path,
decode_method=self.config.decode_method,
num_decoding_left_chunks=self.config.num_decoding_left_chunks,
am_predictor_conf=self.config.am_predictor_conf):
return False
return True
def init(self, config: dict) -> bool: def init(self, config: dict) -> bool:
"""init engine resource """init engine resource
@ -861,16 +885,7 @@ class ASREngine(BaseEngine):
logger.info(f"paddlespeech_server set the device: {self.device}") logger.info(f"paddlespeech_server set the device: {self.device}")
if not self.executor._init_from_path( if not self.init_model():
model_type=self.config.model_type,
am_model=self.config.am_model,
am_params=self.config.am_params,
lang=self.config.lang,
sample_rate=self.config.sample_rate,
cfg_path=self.config.cfg_path,
decode_method=self.config.decode_method,
num_decoding_left_chunks=self.config.num_decoding_left_chunks,
am_predictor_conf=self.config.am_predictor_conf):
logger.error( logger.error(
"Init the ASR server occurs error, please check the server configuration yaml" "Init the ASR server occurs error, please check the server configuration yaml"
) )

@ -13,12 +13,16 @@
# limitations under the License. # limitations under the License.
from typing import Text from typing import Text
from ..utils.log import logger
__all__ = ['EngineFactory'] __all__ = ['EngineFactory']
class EngineFactory(object): class EngineFactory(object):
@staticmethod @staticmethod
def get_engine(engine_name: Text, engine_type: Text): def get_engine(engine_name: Text, engine_type: Text):
logger.info(f"{engine_name} : {engine_type} engine.")
if engine_name == 'asr' and engine_type == 'inference': if engine_name == 'asr' and engine_type == 'inference':
from paddlespeech.server.engine.asr.paddleinference.asr_engine import ASREngine from paddlespeech.server.engine.asr.paddleinference.asr_engine import ASREngine
return ASREngine() return ASREngine()
@ -26,7 +30,13 @@ class EngineFactory(object):
from paddlespeech.server.engine.asr.python.asr_engine import ASREngine from paddlespeech.server.engine.asr.python.asr_engine import ASREngine
return ASREngine() return ASREngine()
elif engine_name == 'asr' and engine_type == 'online': elif engine_name == 'asr' and engine_type == 'online':
from paddlespeech.server.engine.asr.online.asr_engine import ASREngine from paddlespeech.server.engine.asr.online.python.asr_engine import ASREngine
return ASREngine()
elif engine_name == 'asr' and engine_type == 'online-inference':
from paddlespeech.server.engine.asr.online.paddleinference.asr_engine import ASREngine
return ASREngine()
elif engine_name == 'asr' and engine_type == 'online-onnx':
from paddlespeech.server.engine.asr.online.onnx.asr_engine import ASREngine
return ASREngine() return ASREngine()
elif engine_name == 'tts' and engine_type == 'inference': elif engine_name == 'tts' and engine_type == 'inference':
from paddlespeech.server.engine.tts.paddleinference.tts_engine import TTSEngine from paddlespeech.server.engine.tts.paddleinference.tts_engine import TTSEngine

@ -16,21 +16,34 @@ from typing import Optional
import onnxruntime as ort import onnxruntime as ort
from .log import logger
def get_sess(model_path: Optional[os.PathLike]=None, sess_conf: dict=None): def get_sess(model_path: Optional[os.PathLike]=None, sess_conf: dict=None):
logger.info(f"ort sessconf: {sess_conf}")
sess_options = ort.SessionOptions() sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
if sess_conf.get('graph_optimization_level', 99) == 0:
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
sess_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL sess_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
if "gpu" in sess_conf["device"]: # "gpu:0"
providers = ['CPUExecutionProvider']
if "gpu" in sess_conf.get("device", ""):
providers = ['CUDAExecutionProvider']
# fastspeech2/mb_melgan can't use trt now! # fastspeech2/mb_melgan can't use trt now!
if sess_conf["use_trt"]: if sess_conf.get("use_trt", 0):
providers = ['TensorrtExecutionProvider'] providers = ['TensorrtExecutionProvider']
else: logger.info(f"ort providers: {providers}")
providers = ['CUDAExecutionProvider']
elif sess_conf["device"] == "cpu": if 'cpu_threads' in sess_conf:
providers = ['CPUExecutionProvider'] sess_options.intra_op_num_threads = sess_conf.get("cpu_threads", 0)
sess_options.intra_op_num_threads = sess_conf["cpu_threads"] else:
sess_options.intra_op_num_threads = sess_conf.get(
"intra_op_num_threads", 0)
sess_options.inter_op_num_threads = sess_conf.get("inter_op_num_threads", 0)
sess = ort.InferenceSession( sess = ort.InferenceSession(
model_path, providers=providers, sess_options=sess_options) model_path, providers=providers, sess_options=sess_options)
return sess return sess

Loading…
Cancel
Save