|
|
@ -21,14 +21,15 @@ import paddle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(args):
|
|
|
|
def main(args):
|
|
|
|
checkpoints = []
|
|
|
|
|
|
|
|
val_scores = []
|
|
|
|
val_scores = []
|
|
|
|
|
|
|
|
beat_val_scores = []
|
|
|
|
|
|
|
|
selected_epochs = []
|
|
|
|
if args.val_best:
|
|
|
|
if args.val_best:
|
|
|
|
jsons = glob.glob(f'{args.ckpt_dir}/[!train]*.json')
|
|
|
|
jsons = glob.glob(f'{args.ckpt_dir}/[!train]*.json')
|
|
|
|
for y in jsons:
|
|
|
|
for y in jsons:
|
|
|
|
dic_json = json.load(y)
|
|
|
|
with open(y, 'r') as f:
|
|
|
|
loss = dic_json['valid_loss']
|
|
|
|
dic_json = json.load(f)
|
|
|
|
|
|
|
|
loss = dic_json['val_loss']
|
|
|
|
epoch = dic_json['epoch']
|
|
|
|
epoch = dic_json['epoch']
|
|
|
|
if epoch >= args.min_epoch and epoch <= args.max_epoch:
|
|
|
|
if epoch >= args.min_epoch and epoch <= args.max_epoch:
|
|
|
|
val_scores.append((epoch, loss))
|
|
|
|
val_scores.append((epoch, loss))
|
|
|
@ -40,9 +41,11 @@ def main(args):
|
|
|
|
args.ckpt_dir + '/{}.pdparams'.format(int(epoch))
|
|
|
|
args.ckpt_dir + '/{}.pdparams'.format(int(epoch))
|
|
|
|
for epoch in sorted_val_scores[:args.num, 0]
|
|
|
|
for epoch in sorted_val_scores[:args.num, 0]
|
|
|
|
]
|
|
|
|
]
|
|
|
|
print("best val scores = " + str(sorted_val_scores[:args.num, 1]))
|
|
|
|
|
|
|
|
print("selected epochs = " + str(sorted_val_scores[:args.num, 0].astype(
|
|
|
|
beat_val_scores = sorted_val_scores[:args.num, 1]
|
|
|
|
np.int64)))
|
|
|
|
selected_epochs = sorted_val_scores[:args.num, 0].astype(np.int64)
|
|
|
|
|
|
|
|
print("best val scores = " + str(beat_val_scores))
|
|
|
|
|
|
|
|
print("selected epochs = " + str(selected_epochs))
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
path_list = glob.glob(f'{args.ckpt_dir}/[!avg][!final]*.pdparams')
|
|
|
|
path_list = glob.glob(f'{args.ckpt_dir}/[!avg][!final]*.pdparams')
|
|
|
|
path_list = sorted(path_list, key=os.path.getmtime)
|
|
|
|
path_list = sorted(path_list, key=os.path.getmtime)
|
|
|
@ -64,11 +67,21 @@ def main(args):
|
|
|
|
# average
|
|
|
|
# average
|
|
|
|
for k in avg.keys():
|
|
|
|
for k in avg.keys():
|
|
|
|
if avg[k] is not None:
|
|
|
|
if avg[k] is not None:
|
|
|
|
avg[k] = paddle.divide(avg[k], num)
|
|
|
|
avg[k] /= num
|
|
|
|
|
|
|
|
|
|
|
|
paddle.save(avg, args.dst_model)
|
|
|
|
paddle.save(avg, args.dst_model)
|
|
|
|
print(f'Saving to {args.dst_model}')
|
|
|
|
print(f'Saving to {args.dst_model}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
meta_path = os.path.splitext(args.dst_model)[0] + '.avg.json'
|
|
|
|
|
|
|
|
with open(meta_path, 'w') as f:
|
|
|
|
|
|
|
|
data = json.dumps({
|
|
|
|
|
|
|
|
"avg_ckpt": args.dst_model,
|
|
|
|
|
|
|
|
"ckpt": path_list,
|
|
|
|
|
|
|
|
"epoch": selected_epochs.tolist(),
|
|
|
|
|
|
|
|
"val_loss": beat_val_scores.tolist(),
|
|
|
|
|
|
|
|
})
|
|
|
|
|
|
|
|
f.write(data + "\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser(description='average model')
|
|
|
|
parser = argparse.ArgumentParser(description='average model')
|
|
|
|