|
|
|
@ -17,8 +17,12 @@ Acoustic Model | Training Data | Token-based | Size | Descriptions | CER | WER |
|
|
|
|
|
[Conformer Librispeech ASR1 Model](https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/asr1_conformer_librispeech_ckpt_0.1.1.model.tar.gz) | Librispeech Dataset | subword-based | 191 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring |-| 0.0338 | 960 h | [Conformer Librispeech ASR1](../../examples/librispeech/asr1) | python |
|
|
|
|
|
[Transformer Librispeech ASR1 Model](https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/asr1_transformer_librispeech_ckpt_0.1.1.model.tar.gz) | Librispeech Dataset | subword-based | 131 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: Attention rescoring |-| 0.0381 | 960 h | [Transformer Librispeech ASR1](../../examples/librispeech/asr1) | python |
|
|
|
|
|
[Transformer Librispeech ASR2 Model](https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr2/asr2_transformer_librispeech_ckpt_0.1.1.model.tar.gz) | Librispeech Dataset | subword-based | 131 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: JoinCTC w/ LM |-| 0.0240 | 960 h | [Transformer Librispeech ASR2](../../examples/librispeech/asr2) | python |
|
|
|
|
|
[Wav2vec2-large-960h-lv60-self Model](https://paddlespeech.bj.bcebos.com/wav2vec/wav2vec2-large-960h-lv60-self.pdparams) | Librispeech and LV-60k Dataset | - | 1.18 GB | Pre-trained Wav2vec2.0 Model |-| - | 5.3w h | [Wav2vecASR Librispeech ASR3](../../examples/librispeech/asr3) | python |
|
|
|
|
|
[Wav2vec2ASR-large-960h-librispeech Model](https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr3/wav2vec2ASR-large-960h-librispeech_ckpt_1.3.0.model.tar.gz) | Librispeech | - | 1.18 GB | Encoder:Wav2vec2.0, Decoder:CTC, Decoding method: Greedy search |-| 0.0189 | 960 h | [Wav2vecASR Librispeech ASR3](../../examples/librispeech/asr3) | python |
|
|
|
|
|
|
|
|
|
|
### Self-Supervised Pre-trained Model
|
|
|
|
|
Model | Pre-Train Method | Pre-Train Data | Finetune Data | Size | Descriptions | CER | WER | Example Link |
|
|
|
|
|
:-------------:| :------------:| :-----: | -----: | :-----: |:-----:| :-----: | :-----: | :-----: |
|
|
|
|
|
[Wav2vec2-large-960h-lv60-self Model](https://paddlespeech.bj.bcebos.com/wav2vec/wav2vec2-large-960h-lv60-self.pdparams) | wav2vec2 | Librispeech and LV-60k Dataset (5.3w h) | - | 1.18 GB |Pre-trained Wav2vec2.0 Model | - | - | - |
|
|
|
|
|
[Wav2vec2ASR-large-960h-librispeech Model](https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr3/wav2vec2ASR-large-960h-librispeech_ckpt_1.3.0.model.tar.gz) | wav2vec2 | Librispeech and LV-60k Dataset (5.3w h) | Librispeech (960 h) | 1.18 GB |Encoder: Wav2vec2.0, Decoder: CTC, Decoding method: Greedy search | - | 0.0189 | [Wav2vecASR Librispeech ASR3](../../examples/librispeech/asr3) |
|
|
|
|
|
|
|
|
|
|
### Language Model based on NGram
|
|
|
|
|
Language Model | Training Data | Token-based | Size | Descriptions
|
|
|
|
|