Merge pull request #756 from PaddlePaddle/filter

test w/ all example & fix ctc api & add new io
pull/767/head
Hui Zhang 3 years ago committed by GitHub
commit f05f367cc5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

File diff suppressed because it is too large Load Diff

@ -3431,7 +3431,7 @@
" convolution_layer_args = (output_size, cnn_module_kernel, activation,\n",
" cnn_module_norm, causal)\n",
"\n",
" self.encoders = nn.ModuleList([\n",
" self.encoders = nn.LayerList([\n",
" ConformerEncoderLayer(\n",
" size=output_size,\n",
" self_attn=encoder_selfattn_layer(*encoder_selfattn_layer_args),\n",

@ -30,24 +30,13 @@ logger = Log(__name__).getlog()
logger.warn = logger.warning
########### hcak paddle #############
paddle.bool = 'bool'
paddle.float16 = 'float16'
paddle.half = 'float16'
paddle.float32 = 'float32'
paddle.float = 'float32'
paddle.float64 = 'float64'
paddle.double = 'float64'
paddle.int8 = 'int8'
paddle.int16 = 'int16'
paddle.short = 'int16'
paddle.int32 = 'int32'
paddle.int = 'int32'
paddle.int64 = 'int64'
paddle.long = 'int64'
paddle.uint8 = 'uint8'
paddle.uint16 = 'uint16'
paddle.complex64 = 'complex64'
paddle.complex128 = 'complex128'
paddle.cdouble = 'complex128'
@ -403,45 +392,7 @@ if not hasattr(paddle.nn.functional, 'glu'):
# return x * 0.5 * (1.0 + paddle.erf(x / math.sqrt(2.0)))
# hack loss
def ctc_loss(logits,
labels,
input_lengths,
label_lengths,
blank=0,
reduction='mean',
norm_by_times=True):
#logger.info("my ctc loss with norm by times")
## https://github.com/PaddlePaddle/Paddle/blob/f5ca2db2cc/paddle/fluid/operators/warpctc_op.h#L403
loss_out = paddle.fluid.layers.warpctc(logits, labels, blank, norm_by_times,
input_lengths, label_lengths)
loss_out = paddle.fluid.layers.squeeze(loss_out, [-1])
assert reduction in ['mean', 'sum', 'none']
if reduction == 'mean':
loss_out = paddle.mean(loss_out / label_lengths)
elif reduction == 'sum':
loss_out = paddle.sum(loss_out)
return loss_out
logger.warn(
"override ctc_loss of paddle.nn.functional if exists, remove this when fixed!"
)
F.ctc_loss = ctc_loss
########### hcak paddle.nn #############
if not hasattr(paddle.nn, 'Module'):
logger.warn("register user Module to paddle.nn, remove this when fixed!")
setattr(paddle.nn, 'Module', paddle.nn.Layer)
# maybe cause assert isinstance(sublayer, core.Layer)
if not hasattr(paddle.nn, 'ModuleList'):
logger.warn(
"register user ModuleList to paddle.nn, remove this when fixed!")
setattr(paddle.nn, 'ModuleList', paddle.nn.LayerList)
class GLU(nn.Layer):
"""Gated Linear Units (GLU) Layer"""

@ -264,12 +264,12 @@ class U2Trainer(Trainer):
config.data.manifest = config.data.test_manifest
# filter test examples, will cause less examples, but no mismatch with training
# and can use large batch size , save training time, so filter test egs now.
# config.data.min_input_len = 0.0 # second
# config.data.max_input_len = float('inf') # second
# config.data.min_output_len = 0.0 # tokens
# config.data.max_output_len = float('inf') # tokens
# config.data.min_output_input_ratio = 0.00
# config.data.max_output_input_ratio = float('inf')
config.data.min_input_len = 0.0 # second
config.data.max_input_len = float('inf') # second
config.data.min_output_len = 0.0 # tokens
config.data.max_output_len = float('inf') # tokens
config.data.min_output_input_ratio = 0.00
config.data.max_output_input_ratio = float('inf')
test_dataset = ManifestDataset.from_config(config)
# return text ord id

@ -13,18 +13,28 @@
# limitations under the License.
"""Contains the data augmentation pipeline."""
import json
from collections.abc import Sequence
from inspect import signature
import numpy as np
from deepspeech.frontend.augmentor.impulse_response import ImpulseResponseAugmentor
from deepspeech.frontend.augmentor.noise_perturb import NoisePerturbAugmentor
from deepspeech.frontend.augmentor.online_bayesian_normalization import \
OnlineBayesianNormalizationAugmentor
from deepspeech.frontend.augmentor.resample import ResampleAugmentor
from deepspeech.frontend.augmentor.shift_perturb import ShiftPerturbAugmentor
from deepspeech.frontend.augmentor.spec_augment import SpecAugmentor
from deepspeech.frontend.augmentor.speed_perturb import SpeedPerturbAugmentor
from deepspeech.frontend.augmentor.volume_perturb import VolumePerturbAugmentor
from deepspeech.frontend.augmentor.base import AugmentorBase
from deepspeech.utils.dynamic_import import dynamic_import
from deepspeech.utils.log import Log
__all__ = ["AugmentationPipeline"]
logger = Log(__name__).getlog()
import_alias = dict(
volume="deepspeech.frontend.augmentor.impulse_response:VolumePerturbAugmentor",
shift="deepspeech.frontend.augmentor.shift_perturb:ShiftPerturbAugmentor",
speed="deepspeech.frontend.augmentor.speed_perturb:SpeedPerturbAugmentor",
resample="deepspeech.frontend.augmentor.resample:ResampleAugmentor",
bayesian_normal="deepspeech.frontend.augmentor.online_bayesian_normalization:OnlineBayesianNormalizationAugmentor",
noise="deepspeech.frontend.augmentor.noise_perturb:NoisePerturbAugmentor",
impulse="deepspeech.frontend.augmentor.impulse_response:ImpulseResponseAugmentor",
specaug="deepspeech.frontend.augmentor.spec_augment:SpecAugmentor", )
class AugmentationPipeline():
@ -78,20 +88,74 @@ class AugmentationPipeline():
augmentor to take effect. If "prob" is zero, the augmentor does not take
effect.
:param augmentation_config: Augmentation configuration in json string.
:type augmentation_config: str
:param random_seed: Random seed.
:type random_seed: int
:raises ValueError: If the augmentation json config is in incorrect format".
Params:
augmentation_config(str): Augmentation configuration in json string.
random_seed(int): Random seed.
train(bool): whether is train mode.
Raises:
ValueError: If the augmentation json config is in incorrect format".
"""
def __init__(self, augmentation_config: str, random_seed=0):
def __init__(self, augmentation_config: str, random_seed: int=0):
self._rng = np.random.RandomState(random_seed)
self._spec_types = ('specaug')
self._augmentors, self._rates = self._parse_pipeline_from(
augmentation_config, 'audio')
if augmentation_config is None:
self.conf = {}
else:
self.conf = json.loads(augmentation_config)
self._augmentors, self._rates = self._parse_pipeline_from('all')
self._audio_augmentors, self._audio_rates = self._parse_pipeline_from(
'audio')
self._spec_augmentors, self._spec_rates = self._parse_pipeline_from(
augmentation_config, 'feature')
'feature')
def __call__(self, xs, uttid_list=None, **kwargs):
if not isinstance(xs, Sequence):
is_batch = False
xs = [xs]
else:
is_batch = True
if isinstance(uttid_list, str):
uttid_list = [uttid_list for _ in range(len(xs))]
if self.conf.get("mode", "sequential") == "sequential":
for idx, (func, rate) in enumerate(
zip(self._augmentors, self._rates), 0):
if self._rng.uniform(0., 1.) >= rate:
continue
# Derive only the args which the func has
try:
param = signature(func).parameters
except ValueError:
# Some function, e.g. built-in function, are failed
param = {}
_kwargs = {k: v for k, v in kwargs.items() if k in param}
try:
if uttid_list is not None and "uttid" in param:
xs = [
func(x, u, **_kwargs)
for x, u in zip(xs, uttid_list)
]
else:
xs = [func(x, **_kwargs) for x in xs]
except Exception:
logger.fatal("Catch a exception from {}th func: {}".format(
idx, func))
raise
else:
raise NotImplementedError(
"Not supporting mode={}".format(self.conf["mode"]))
if is_batch:
return xs
else:
return xs[0]
def transform_audio(self, audio_segment):
"""Run the pre-processing pipeline for data augmentation.
@ -101,7 +165,7 @@ class AugmentationPipeline():
:param audio_segment: Audio segment to process.
:type audio_segment: AudioSegmenet|SpeechSegment
"""
for augmentor, rate in zip(self._augmentors, self._rates):
for augmentor, rate in zip(self._audio_augmentors, self._audio_rates):
if self._rng.uniform(0., 1.) < rate:
augmentor.transform_audio(audio_segment)
@ -116,14 +180,14 @@ class AugmentationPipeline():
spec_segment = augmentor.transform_feature(spec_segment)
return spec_segment
def _parse_pipeline_from(self, config_json, aug_type='audio'):
def _parse_pipeline_from(self, aug_type='all'):
"""Parse the config json to build a augmentation pipelien."""
assert aug_type in ('audio', 'feature'), aug_type
try:
configs = json.loads(config_json)
assert aug_type in ('audio', 'feature', 'all'), aug_type
audio_confs = []
feature_confs = []
for config in configs:
all_confs = []
for config in self.conf:
all_confs.append(config)
if config["type"] in self._spec_types:
feature_confs.append(config)
else:
@ -133,35 +197,22 @@ class AugmentationPipeline():
aug_confs = audio_confs
elif aug_type == 'feature':
aug_confs = feature_confs
else:
aug_confs = all_confs
augmentors = [
self._get_augmentor(config["type"], config["params"])
for config in aug_confs
]
rates = [config["prob"] for config in aug_confs]
except Exception as e:
raise ValueError("Failed to parse the augmentation config json: "
"%s" % str(e))
return augmentors, rates
def _get_augmentor(self, augmentor_type, params):
"""Return an augmentation model by the type name, and pass in params."""
if augmentor_type == "volume":
return VolumePerturbAugmentor(self._rng, **params)
elif augmentor_type == "shift":
return ShiftPerturbAugmentor(self._rng, **params)
elif augmentor_type == "speed":
return SpeedPerturbAugmentor(self._rng, **params)
elif augmentor_type == "resample":
return ResampleAugmentor(self._rng, **params)
elif augmentor_type == "bayesian_normal":
return OnlineBayesianNormalizationAugmentor(self._rng, **params)
elif augmentor_type == "noise":
return NoisePerturbAugmentor(self._rng, **params)
elif augmentor_type == "impulse":
return ImpulseResponseAugmentor(self._rng, **params)
elif augmentor_type == "specaug":
return SpecAugmentor(self._rng, **params)
else:
class_obj = dynamic_import(augmentor_type, import_alias)
assert issubclass(class_obj, AugmentorBase)
try:
obj = class_obj(self._rng, **params)
except Exception:
raise ValueError("Unknown augmentor type [%s]." % augmentor_type)
return obj

@ -28,6 +28,10 @@ class AugmentorBase():
def __init__(self):
pass
@abstractmethod
def __call__(self, xs):
raise NotImplementedError
@abstractmethod
def transform_audio(self, audio_segment):
"""Adds various effects to the input audio segment. Such effects

@ -30,6 +30,11 @@ class ImpulseResponseAugmentor(AugmentorBase):
self._rng = rng
self._impulse_manifest = read_manifest(impulse_manifest_path)
def __call__(self, x, uttid=None, train=True):
if not train:
return
self.transform_audio(x)
def transform_audio(self, audio_segment):
"""Add impulse response effect.

@ -36,6 +36,11 @@ class NoisePerturbAugmentor(AugmentorBase):
self._rng = rng
self._noise_manifest = read_manifest(manifest_path=noise_manifest_path)
def __call__(self, x, uttid=None, train=True):
if not train:
return
self.transform_audio(x)
def transform_audio(self, audio_segment):
"""Add background noise audio.

@ -44,6 +44,11 @@ class OnlineBayesianNormalizationAugmentor(AugmentorBase):
self._rng = rng
self._startup_delay = startup_delay
def __call__(self, x, uttid=None, train=True):
if not train:
return
self.transform_audio(x)
def transform_audio(self, audio_segment):
"""Normalizes the input audio using the online Bayesian approach.

@ -31,6 +31,11 @@ class ResampleAugmentor(AugmentorBase):
self._new_sample_rate = new_sample_rate
self._rng = rng
def __call__(self, x, uttid=None, train=True):
if not train:
return
self.transform_audio(x)
def transform_audio(self, audio_segment):
"""Resamples the input audio to a target sample rate.

@ -31,6 +31,11 @@ class ShiftPerturbAugmentor(AugmentorBase):
self._max_shift_ms = max_shift_ms
self._rng = rng
def __call__(self, x, uttid=None, train=True):
if not train:
return
self.transform_audio(x)
def transform_audio(self, audio_segment):
"""Shift audio.

@ -157,6 +157,11 @@ class SpecAugmentor(AugmentorBase):
self._time_mask = (t_0, t_0 + t)
return xs
def __call__(self, x, train=True):
if not train:
return
self.transform_audio(x)
def transform_feature(self, xs: np.ndarray):
"""
Args:

@ -79,6 +79,11 @@ class SpeedPerturbAugmentor(AugmentorBase):
self._rates = np.linspace(
self._min_rate, self._max_rate, self._num_rates, endpoint=True)
def __call__(self, x, uttid=None, train=True):
if not train:
return
self.transform_audio(x)
def transform_audio(self, audio_segment):
"""Sample a new speed rate from the given range and
changes the speed of the given audio clip.

@ -37,6 +37,11 @@ class VolumePerturbAugmentor(AugmentorBase):
self._max_gain_dBFS = max_gain_dBFS
self._rng = rng
def __call__(self, x, uttid=None, train=True):
if not train:
return
self.transform_audio(x)
def transform_audio(self, audio_segment):
"""Change audio loadness.

@ -11,139 +11,3 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from paddle.io import DataLoader
from deepspeech.io.collator import SpeechCollator
from deepspeech.io.dataset import ManifestDataset
from deepspeech.io.sampler import SortagradBatchSampler
from deepspeech.io.sampler import SortagradDistributedBatchSampler
def create_dataloader(manifest_path,
unit_type,
vocab_filepath,
mean_std_filepath,
spm_model_prefix,
augmentation_config='{}',
max_input_len=float('inf'),
min_input_len=0.0,
max_output_len=float('inf'),
min_output_len=0.0,
max_output_input_ratio=float('inf'),
min_output_input_ratio=0.0,
stride_ms=10.0,
window_ms=20.0,
max_freq=None,
specgram_type='linear',
feat_dim=None,
delta_delta=False,
use_dB_normalization=True,
random_seed=0,
keep_transcription_text=False,
is_training=False,
batch_size=1,
num_workers=0,
sortagrad=False,
shuffle_method=None,
dist=False):
dataset = ManifestDataset(
manifest_path=manifest_path,
unit_type=unit_type,
vocab_filepath=vocab_filepath,
mean_std_filepath=mean_std_filepath,
spm_model_prefix=spm_model_prefix,
augmentation_config=augmentation_config,
max_input_len=max_input_len,
min_input_len=min_input_len,
max_output_len=max_output_len,
min_output_len=min_output_len,
max_output_input_ratio=max_output_input_ratio,
min_output_input_ratio=min_output_input_ratio,
stride_ms=stride_ms,
window_ms=window_ms,
max_freq=max_freq,
specgram_type=specgram_type,
feat_dim=feat_dim,
delta_delta=delta_delta,
use_dB_normalization=use_dB_normalization,
random_seed=random_seed,
keep_transcription_text=keep_transcription_text)
if dist:
batch_sampler = SortagradDistributedBatchSampler(
dataset,
batch_size,
num_replicas=None,
rank=None,
shuffle=is_training,
drop_last=is_training,
sortagrad=is_training,
shuffle_method=shuffle_method)
else:
batch_sampler = SortagradBatchSampler(
dataset,
shuffle=is_training,
batch_size=batch_size,
drop_last=is_training,
sortagrad=is_training,
shuffle_method=shuffle_method)
def padding_batch(batch,
padding_to=-1,
flatten=False,
keep_transcription_text=True):
"""
Padding audio features with zeros to make them have the same shape (or
a user-defined shape) within one bach.
If ``padding_to`` is -1, the maximun shape in the batch will be used
as the target shape for padding. Otherwise, `padding_to` will be the
target shape (only refers to the second axis).
If `flatten` is True, features will be flatten to 1darray.
"""
new_batch = []
# get target shape
max_length = max([audio.shape[1] for audio, text in batch])
if padding_to != -1:
if padding_to < max_length:
raise ValueError("If padding_to is not -1, it should be larger "
"than any instance's shape in the batch")
max_length = padding_to
max_text_length = max([len(text) for audio, text in batch])
# padding
padded_audios = []
audio_lens = []
texts, text_lens = [], []
for audio, text in batch:
padded_audio = np.zeros([audio.shape[0], max_length])
padded_audio[:, :audio.shape[1]] = audio
if flatten:
padded_audio = padded_audio.flatten()
padded_audios.append(padded_audio)
audio_lens.append(audio.shape[1])
padded_text = np.zeros([max_text_length])
if keep_transcription_text:
padded_text[:len(text)] = [ord(t) for t in text] # string
else:
padded_text[:len(text)] = text # ids
texts.append(padded_text)
text_lens.append(len(text))
padded_audios = np.array(padded_audios).astype('float32')
audio_lens = np.array(audio_lens).astype('int64')
texts = np.array(texts).astype('int32')
text_lens = np.array(text_lens).astype('int64')
return padded_audios, audio_lens, texts, text_lens
# collate_fn=functools.partial(padding_batch, keep_transcription_text=keep_transcription_text),
collate_fn = SpeechCollator(keep_transcription_text=keep_transcription_text)
loader = DataLoader(
dataset,
batch_sampler=batch_sampler,
collate_fn=collate_fn,
num_workers=num_workers)
return loader

@ -0,0 +1,469 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import numpy as np
from deepspeech.utils.log import Log
__all__ = ["make_batchset"]
logger = Log(__name__).getlog()
def batchfy_by_seq(
sorted_data,
batch_size,
max_length_in,
max_length_out,
min_batch_size=1,
shortest_first=False,
ikey="input",
iaxis=0,
okey="output",
oaxis=0, ):
"""Make batch set from json dictionary
:param List[(str, Dict[str, Any])] sorted_data: dictionary loaded from data.json
:param int batch_size: batch size
:param int max_length_in: maximum length of input to decide adaptive batch size
:param int max_length_out: maximum length of output to decide adaptive batch size
:param int min_batch_size: mininum batch size (for multi-gpu)
:param bool shortest_first: Sort from batch with shortest samples
to longest if true, otherwise reverse
:param str ikey: key to access input
(for ASR ikey="input", for TTS, MT ikey="output".)
:param int iaxis: dimension to access input
(for ASR, TTS iaxis=0, for MT iaxis="1".)
:param str okey: key to access output
(for ASR, MT okey="output". for TTS okey="input".)
:param int oaxis: dimension to access output
(for ASR, TTS, MT oaxis=0, reserved for future research, -1 means all axis.)
:return: List[List[Tuple[str, dict]]] list of batches
"""
if batch_size <= 0:
raise ValueError(f"Invalid batch_size={batch_size}")
# check #utts is more than min_batch_size
if len(sorted_data) < min_batch_size:
raise ValueError(
f"#utts({len(sorted_data)}) is less than min_batch_size({min_batch_size})."
)
# make list of minibatches
minibatches = []
start = 0
while True:
_, info = sorted_data[start]
ilen = int(info[ikey][iaxis]["shape"][0])
olen = (int(info[okey][oaxis]["shape"][0]) if oaxis >= 0 else
max(map(lambda x: int(x["shape"][0]), info[okey])))
factor = max(int(ilen / max_length_in), int(olen / max_length_out))
# change batchsize depending on the input and output length
# if ilen = 1000 and max_length_in = 800
# then b = batchsize / 2
# and max(min_batches, .) avoids batchsize = 0
bs = max(min_batch_size, int(batch_size / (1 + factor)))
end = min(len(sorted_data), start + bs)
minibatch = sorted_data[start:end]
if shortest_first:
minibatch.reverse()
# check each batch is more than minimum batchsize
if len(minibatch) < min_batch_size:
mod = min_batch_size - len(minibatch) % min_batch_size
additional_minibatch = [
sorted_data[i] for i in np.random.randint(0, start, mod)
]
if shortest_first:
additional_minibatch.reverse()
minibatch.extend(additional_minibatch)
minibatches.append(minibatch)
if end == len(sorted_data):
break
start = end
# batch: List[List[Tuple[str, dict]]]
return minibatches
def batchfy_by_bin(
sorted_data,
batch_bins,
num_batches=0,
min_batch_size=1,
shortest_first=False,
ikey="input",
okey="output", ):
"""Make variably sized batch set, which maximizes
the number of bins up to `batch_bins`.
:param List[(str, Dict[str, Any])] sorted_data: dictionary loaded from data.json
:param int batch_bins: Maximum frames of a batch
:param int num_batches: # number of batches to use (for debug)
:param int min_batch_size: minimum batch size (for multi-gpu)
:param int test: Return only every `test` batches
:param bool shortest_first: Sort from batch with shortest samples
to longest if true, otherwise reverse
:param str ikey: key to access input (for ASR ikey="input", for TTS ikey="output".)
:param str okey: key to access output (for ASR okey="output". for TTS okey="input".)
:return: List[Tuple[str, Dict[str, List[Dict[str, Any]]]] list of batches
"""
if batch_bins <= 0:
raise ValueError(f"invalid batch_bins={batch_bins}")
length = len(sorted_data)
idim = int(sorted_data[0][1][ikey][0]["shape"][1])
odim = int(sorted_data[0][1][okey][0]["shape"][1])
logger.info("# utts: " + str(len(sorted_data)))
minibatches = []
start = 0
n = 0
while True:
# Dynamic batch size depending on size of samples
b = 0
next_size = 0
max_olen = 0
while next_size < batch_bins and (start + b) < length:
ilen = int(sorted_data[start + b][1][ikey][0]["shape"][0]) * idim
olen = int(sorted_data[start + b][1][okey][0]["shape"][0]) * odim
if olen > max_olen:
max_olen = olen
next_size = (max_olen + ilen) * (b + 1)
if next_size <= batch_bins:
b += 1
elif next_size == 0:
raise ValueError(
f"Can't fit one sample in batch_bins ({batch_bins}): "
f"Please increase the value")
end = min(length, start + max(min_batch_size, b))
batch = sorted_data[start:end]
if shortest_first:
batch.reverse()
minibatches.append(batch)
# Check for min_batch_size and fixes the batches if needed
i = -1
while len(minibatches[i]) < min_batch_size:
missing = min_batch_size - len(minibatches[i])
if -i == len(minibatches):
minibatches[i + 1].extend(minibatches[i])
minibatches = minibatches[1:]
break
else:
minibatches[i].extend(minibatches[i - 1][:missing])
minibatches[i - 1] = minibatches[i - 1][missing:]
i -= 1
if end == length:
break
start = end
n += 1
if num_batches > 0:
minibatches = minibatches[:num_batches]
lengths = [len(x) for x in minibatches]
logger.info(
str(len(minibatches)) + " batches containing from " + str(min(lengths))
+ " to " + str(max(lengths)) + " samples " + "(avg " + str(
int(np.mean(lengths))) + " samples).")
return minibatches
def batchfy_by_frame(
sorted_data,
max_frames_in,
max_frames_out,
max_frames_inout,
num_batches=0,
min_batch_size=1,
shortest_first=False,
ikey="input",
okey="output", ):
"""Make variable batch set, which maximizes the number of frames to max_batch_frame.
:param List[(str, Dict[str, Any])] sorteddata: dictionary loaded from data.json
:param int max_frames_in: Maximum input frames of a batch
:param int max_frames_out: Maximum output frames of a batch
:param int max_frames_inout: Maximum input+output frames of a batch
:param int num_batches: # number of batches to use (for debug)
:param int min_batch_size: minimum batch size (for multi-gpu)
:param int test: Return only every `test` batches
:param bool shortest_first: Sort from batch with shortest samples
to longest if true, otherwise reverse
:param str ikey: key to access input (for ASR ikey="input", for TTS ikey="output".)
:param str okey: key to access output (for ASR okey="output". for TTS okey="input".)
:return: List[Tuple[str, Dict[str, List[Dict[str, Any]]]] list of batches
"""
if max_frames_in <= 0 and max_frames_out <= 0 and max_frames_inout <= 0:
raise ValueError(
"At least, one of `--batch-frames-in`, `--batch-frames-out` or "
"`--batch-frames-inout` should be > 0")
length = len(sorted_data)
minibatches = []
start = 0
end = 0
while end != length:
# Dynamic batch size depending on size of samples
b = 0
max_olen = 0
max_ilen = 0
while (start + b) < length:
ilen = int(sorted_data[start + b][1][ikey][0]["shape"][0])
if ilen > max_frames_in and max_frames_in != 0:
raise ValueError(
f"Can't fit one sample in --batch-frames-in ({max_frames_in}): "
f"Please increase the value")
olen = int(sorted_data[start + b][1][okey][0]["shape"][0])
if olen > max_frames_out and max_frames_out != 0:
raise ValueError(
f"Can't fit one sample in --batch-frames-out ({max_frames_out}): "
f"Please increase the value")
if ilen + olen > max_frames_inout and max_frames_inout != 0:
raise ValueError(
f"Can't fit one sample in --batch-frames-out ({max_frames_inout}): "
f"Please increase the value")
max_olen = max(max_olen, olen)
max_ilen = max(max_ilen, ilen)
in_ok = max_ilen * (b + 1) <= max_frames_in or max_frames_in == 0
out_ok = max_olen * (b + 1) <= max_frames_out or max_frames_out == 0
inout_ok = (max_ilen + max_olen) * (
b + 1) <= max_frames_inout or max_frames_inout == 0
if in_ok and out_ok and inout_ok:
# add more seq in the minibatch
b += 1
else:
# no more seq in the minibatch
break
end = min(length, start + b)
batch = sorted_data[start:end]
if shortest_first:
batch.reverse()
minibatches.append(batch)
# Check for min_batch_size and fixes the batches if needed
i = -1
while len(minibatches[i]) < min_batch_size:
missing = min_batch_size - len(minibatches[i])
if -i == len(minibatches):
minibatches[i + 1].extend(minibatches[i])
minibatches = minibatches[1:]
break
else:
minibatches[i].extend(minibatches[i - 1][:missing])
minibatches[i - 1] = minibatches[i - 1][missing:]
i -= 1
start = end
if num_batches > 0:
minibatches = minibatches[:num_batches]
lengths = [len(x) for x in minibatches]
logger.info(
str(len(minibatches)) + " batches containing from " + str(min(lengths))
+ " to " + str(max(lengths)) + " samples" + "(avg " + str(
int(np.mean(lengths))) + " samples).")
return minibatches
def batchfy_shuffle(data, batch_size, min_batch_size, num_batches,
shortest_first):
import random
logger.info("use shuffled batch.")
sorted_data = random.sample(data.items(), len(data.items()))
logger.info("# utts: " + str(len(sorted_data)))
# make list of minibatches
minibatches = []
start = 0
while True:
end = min(len(sorted_data), start + batch_size)
# check each batch is more than minimum batchsize
minibatch = sorted_data[start:end]
if shortest_first:
minibatch.reverse()
if len(minibatch) < min_batch_size:
mod = min_batch_size - len(minibatch) % min_batch_size
additional_minibatch = [
sorted_data[i] for i in np.random.randint(0, start, mod)
]
if shortest_first:
additional_minibatch.reverse()
minibatch.extend(additional_minibatch)
minibatches.append(minibatch)
if end == len(sorted_data):
break
start = end
# for debugging
if num_batches > 0:
minibatches = minibatches[:num_batches]
logger.info("# minibatches: " + str(len(minibatches)))
return minibatches
BATCH_COUNT_CHOICES = ["auto", "seq", "bin", "frame"]
BATCH_SORT_KEY_CHOICES = ["input", "output", "shuffle"]
def make_batchset(
data,
batch_size=0,
max_length_in=float("inf"),
max_length_out=float("inf"),
num_batches=0,
min_batch_size=1,
shortest_first=False,
batch_sort_key="input",
count="auto",
batch_bins=0,
batch_frames_in=0,
batch_frames_out=0,
batch_frames_inout=0,
iaxis=0,
oaxis=0, ):
"""Make batch set from json dictionary
if utts have "category" value,
>>> data = [{'category': 'A', 'input': ..., 'utt':'utt1'},
... {'category': 'B', 'input': ..., 'utt':'utt2'},
... {'category': 'B', 'input': ..., 'utt':'utt3'},
... {'category': 'A', 'input': ..., 'utt':'utt4'}]
>>> make_batchset(data, batchsize=2, ...)
[[('utt1', ...), ('utt4', ...)], [('utt2', ...), ('utt3': ...)]]
Note that if any utts doesn't have "category",
perform as same as batchfy_by_{count}
:param List[Dict[str, Any]] data: dictionary loaded from data.json
:param int batch_size: maximum number of sequences in a minibatch.
:param int batch_bins: maximum number of bins (frames x dim) in a minibatch.
:param int batch_frames_in: maximum number of input frames in a minibatch.
:param int batch_frames_out: maximum number of output frames in a minibatch.
:param int batch_frames_out: maximum number of input+output frames in a minibatch.
:param str count: strategy to count maximum size of batch.
For choices, see espnet.asr.batchfy.BATCH_COUNT_CHOICES
:param int max_length_in: maximum length of input to decide adaptive batch size
:param int max_length_out: maximum length of output to decide adaptive batch size
:param int num_batches: # number of batches to use (for debug)
:param int min_batch_size: minimum batch size (for multi-gpu)
:param bool shortest_first: Sort from batch with shortest samples
to longest if true, otherwise reverse
:param str batch_sort_key: how to sort data before creating minibatches
["input", "output", "shuffle"]
:param bool swap_io: if True, use "input" as output and "output"
as input in `data` dict
:param bool mt: if True, use 0-axis of "output" as output and 1-axis of "output"
as input in `data` dict
:param int iaxis: dimension to access input
(for ASR, TTS iaxis=0, for MT iaxis="1".)
:param int oaxis: dimension to access output (for ASR, TTS, MT oaxis=0,
reserved for future research, -1 means all axis.)
:return: List[List[Tuple[str, dict]]] list of batches
"""
# check args
if count not in BATCH_COUNT_CHOICES:
raise ValueError(
f"arg 'count' ({count}) should be one of {BATCH_COUNT_CHOICES}")
if batch_sort_key not in BATCH_SORT_KEY_CHOICES:
raise ValueError(f"arg 'batch_sort_key' ({batch_sort_key}) should be "
f"one of {BATCH_SORT_KEY_CHOICES}")
ikey = "input"
okey = "output"
batch_sort_axis = 0 # index of list
if count == "auto":
if batch_size != 0:
count = "seq"
elif batch_bins != 0:
count = "bin"
elif batch_frames_in != 0 or batch_frames_out != 0 or batch_frames_inout != 0:
count = "frame"
else:
raise ValueError(
f"cannot detect `count` manually set one of {BATCH_COUNT_CHOICES}"
)
logger.info(f"count is auto detected as {count}")
if count != "seq" and batch_sort_key == "shuffle":
raise ValueError(
"batch_sort_key=shuffle is only available if batch_count=seq")
category2data = {} # Dict[str, dict]
for v in data:
k = v['utt']
category2data.setdefault(v.get("category"), {})[k] = v
batches_list = [] # List[List[List[Tuple[str, dict]]]]
for d in category2data.values():
if batch_sort_key == "shuffle":
batches = batchfy_shuffle(d, batch_size, min_batch_size,
num_batches, shortest_first)
batches_list.append(batches)
continue
# sort it by input lengths (long to short)
sorted_data = sorted(
d.items(),
key=lambda data: int(data[1][batch_sort_key][batch_sort_axis]["shape"][0]),
reverse=not shortest_first, )
logger.info("# utts: " + str(len(sorted_data)))
if count == "seq":
batches = batchfy_by_seq(
sorted_data,
batch_size=batch_size,
max_length_in=max_length_in,
max_length_out=max_length_out,
min_batch_size=min_batch_size,
shortest_first=shortest_first,
ikey=ikey,
iaxis=iaxis,
okey=okey,
oaxis=oaxis, )
if count == "bin":
batches = batchfy_by_bin(
sorted_data,
batch_bins=batch_bins,
min_batch_size=min_batch_size,
shortest_first=shortest_first,
ikey=ikey,
okey=okey, )
if count == "frame":
batches = batchfy_by_frame(
sorted_data,
max_frames_in=batch_frames_in,
max_frames_out=batch_frames_out,
max_frames_inout=batch_frames_inout,
min_batch_size=min_batch_size,
shortest_first=shortest_first,
ikey=ikey,
okey=okey, )
batches_list.append(batches)
if len(batches_list) == 1:
batches = batches_list[0]
else:
# Concat list. This way is faster than "sum(batch_list, [])"
batches = list(itertools.chain(*batches_list))
# for debugging
if num_batches > 0:
batches = batches[:num_batches]
logger.info("# minibatches: " + str(len(batches)))
# batch: List[List[Tuple[str, dict]]]
return batches

@ -23,7 +23,7 @@ from deepspeech.frontend.featurizer.speech_featurizer import SpeechFeaturizer
from deepspeech.frontend.normalizer import FeatureNormalizer
from deepspeech.frontend.speech import SpeechSegment
from deepspeech.frontend.utility import IGNORE_ID
from deepspeech.io.utility import pad_sequence
from deepspeech.io.utility import pad_list
from deepspeech.utils.log import Log
__all__ = ["SpeechCollator"]
@ -286,13 +286,12 @@ class SpeechCollator():
texts.append(tokens)
text_lens.append(tokens.shape[0])
padded_audios = pad_sequence(
audios, padding_value=0.0).astype(np.float32) #[B, T, D]
audio_lens = np.array(audio_lens).astype(np.int64)
padded_texts = pad_sequence(
texts, padding_value=IGNORE_ID).astype(np.int64)
text_lens = np.array(text_lens).astype(np.int64)
return utts, padded_audios, audio_lens, padded_texts, text_lens
#[B, T, D]
xs_pad = pad_list(audios, 0.0).astype(np.float32)
ilens = np.array(audio_lens).astype(np.int64)
ys_pad = pad_list(texts, IGNORE_ID).astype(np.int64)
olens = np.array(text_lens).astype(np.int64)
return utts, xs_pad, ilens, ys_pad, olens
@property
def manifest(self):

@ -0,0 +1,80 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from deepspeech.io.utility import pad_list
from deepspeech.utils.log import Log
__all__ = ["CustomConverter"]
logger = Log(__name__).getlog()
class CustomConverter():
"""Custom batch converter.
Args:
subsampling_factor (int): The subsampling factor.
dtype (np.dtype): Data type to convert.
"""
def __init__(self, subsampling_factor=1, dtype=np.float32):
"""Construct a CustomConverter object."""
self.subsampling_factor = subsampling_factor
self.ignore_id = -1
self.dtype = dtype
def __call__(self, batch):
"""Transform a batch and send it to a device.
Args:
batch (list): The batch to transform.
Returns:
tuple(paddle.Tensor, paddle.Tensor, paddle.Tensor)
"""
# batch should be located in list
assert len(batch) == 1
(xs, ys), utts = batch[0]
# perform subsampling
if self.subsampling_factor > 1:
xs = [x[::self.subsampling_factor, :] for x in xs]
# get batch of lengths of input sequences
ilens = np.array([x.shape[0] for x in xs])
# perform padding and convert to tensor
# currently only support real number
if xs[0].dtype.kind == "c":
xs_pad_real = pad_list([x.real for x in xs], 0).astype(self.dtype)
xs_pad_imag = pad_list([x.imag for x in xs], 0).astype(self.dtype)
# Note(kamo):
# {'real': ..., 'imag': ...} will be changed to ComplexTensor in E2E.
# Don't create ComplexTensor and give it E2E here
# because torch.nn.DataParellel can't handle it.
xs_pad = {"real": xs_pad_real, "imag": xs_pad_imag}
else:
xs_pad = pad_list(xs, 0).astype(self.dtype)
# NOTE: this is for multi-output (e.g., speech translation)
ys_pad = pad_list(
[np.array(y[0][:]) if isinstance(y, tuple) else y for y in ys],
self.ignore_id)
olens = np.array(
[y[0].shape[0] if isinstance(y, tuple) else y.shape[0] for y in ys])
return utts, xs_pad, ilens, ys_pad, olens

@ -0,0 +1,138 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.io import DataLoader
from deepspeech.frontend.utility import read_manifest
from deepspeech.io.batchfy import make_batchset
from deepspeech.io.converter import CustomConverter
from deepspeech.io.dataset import TransformDataset
from deepspeech.io.reader import LoadInputsAndTargets
from deepspeech.utils.log import Log
__all__ = ["BatchDataLoader"]
logger = Log(__name__).getlog()
class BatchDataLoader():
def __init__(self,
json_file: str,
train_mode: bool,
sortagrad: bool=False,
batch_size: int=0,
maxlen_in: float=float('inf'),
maxlen_out: float=float('inf'),
minibatches: int=0,
mini_batch_size: int=1,
batch_count: str='auto',
batch_bins: int=0,
batch_frames_in: int=0,
batch_frames_out: int=0,
batch_frames_inout: int=0,
preprocess_conf=None,
n_iter_processes: int=1,
subsampling_factor: int=1,
num_encs: int=1):
self.json_file = json_file
self.train_mode = train_mode
self.use_sortagrad = sortagrad == -1 or sortagrad > 0
self.batch_size = batch_size
self.maxlen_in = maxlen_in
self.maxlen_out = maxlen_out
self.batch_count = batch_count
self.batch_bins = batch_bins
self.batch_frames_in = batch_frames_in
self.batch_frames_out = batch_frames_out
self.batch_frames_inout = batch_frames_inout
self.subsampling_factor = subsampling_factor
self.num_encs = num_encs
self.preprocess_conf = preprocess_conf
self.n_iter_processes = n_iter_processes
# read json data
self.data_json = read_manifest(json_file)
# make minibatch list (variable length)
self.minibaches = make_batchset(
self.data_json,
batch_size,
maxlen_in,
maxlen_out,
minibatches, # for debug
min_batch_size=mini_batch_size,
shortest_first=self.use_sortagrad,
count=batch_count,
batch_bins=batch_bins,
batch_frames_in=batch_frames_in,
batch_frames_out=batch_frames_out,
batch_frames_inout=batch_frames_inout,
iaxis=0,
oaxis=0, )
# data reader
self.reader = LoadInputsAndTargets(
mode="asr",
load_output=True,
preprocess_conf=preprocess_conf,
preprocess_args={"train":
train_mode}, # Switch the mode of preprocessing
)
# Setup a converter
if num_encs == 1:
self.converter = CustomConverter(
subsampling_factor=subsampling_factor, dtype=np.float32)
else:
assert NotImplementedError("not impl CustomConverterMulEnc.")
# hack to make batchsize argument as 1
# actual bathsize is included in a list
# default collate function converts numpy array to pytorch tensor
# we used an empty collate function instead which returns list
self.dataset = TransformDataset(
self.minibaches,
lambda data: self.converter([self.reader(data, return_uttid=True)]))
self.dataloader = DataLoader(
dataset=self.dataset,
batch_size=1,
shuffle=not use_sortagrad if train_mode else False,
collate_fn=lambda x: x[0],
num_workers=n_iter_processes, )
def __repr__(self):
echo = f"<{self.__class__.__module__}.{self.__class__.__name__} object at {hex(id(self))}> "
echo += f"train_mode: {self.train_mode}, "
echo += f"sortagrad: {self.use_sortagrad}, "
echo += f"batch_size: {self.batch_size}, "
echo += f"maxlen_in: {self.maxlen_in}, "
echo += f"maxlen_out: {self.maxlen_out}, "
echo += f"batch_count: {self.batch_count}, "
echo += f"batch_bins: {self.batch_bins}, "
echo += f"batch_frames_in: {self.batch_frames_in}, "
echo += f"batch_frames_out: {self.batch_frames_out}, "
echo += f"batch_frames_inout: {self.batch_frames_inout}, "
echo += f"subsampling_factor: {self.subsampling_factor}, "
echo += f"num_encs: {self.num_encs}, "
echo += f"num_workers: {self.n_iter_processes}, "
echo += f"file: {self.json_file}"
return echo
def __len__(self):
return len(self.dataloader)
def __iter__(self):
return self.dataloader.__iter__()
def __call__(self):
return self.__iter__()

@ -19,7 +19,7 @@ from yacs.config import CfgNode
from deepspeech.frontend.utility import read_manifest
from deepspeech.utils.log import Log
__all__ = ["ManifestDataset", "TripletManifestDataset"]
__all__ = ["ManifestDataset", "TripletManifestDataset", "TransformDataset"]
logger = Log(__name__).getlog()
@ -76,12 +76,18 @@ class ManifestDataset(Dataset):
Args:
manifest_path (str): manifest josn file path
max_input_len ([type], optional): maximum output seq length, in seconds for raw wav, in frame numbers for feature data. Defaults to float('inf').
min_input_len (float, optional): minimum input seq length, in seconds for raw wav, in frame numbers for feature data. Defaults to 0.0.
max_output_len (float, optional): maximum input seq length, in modeling units. Defaults to 500.0.
min_output_len (float, optional): minimum input seq length, in modeling units. Defaults to 0.0.
max_output_input_ratio (float, optional): maximum output seq length/output seq length ratio. Defaults to 10.0.
min_output_input_ratio (float, optional): minimum output seq length/output seq length ratio. Defaults to 0.05.
max_input_len ([type], optional): maximum output seq length,
in seconds for raw wav, in frame numbers for feature data. Defaults to float('inf').
min_input_len (float, optional): minimum input seq length,
in seconds for raw wav, in frame numbers for feature data. Defaults to 0.0.
max_output_len (float, optional): maximum input seq length,
in modeling units. Defaults to 500.0.
min_output_len (float, optional): minimum input seq length,
in modeling units. Defaults to 0.0.
max_output_input_ratio (float, optional): maximum output seq length/output seq length ratio.
Defaults to 10.0.
min_output_input_ratio (float, optional): minimum output seq length/output seq length ratio.
Defaults to 0.05.
"""
super().__init__()
@ -116,3 +122,27 @@ class TripletManifestDataset(ManifestDataset):
instance = self._manifest[idx]
return instance["utt"], instance["feat"], instance["text"], instance[
"text1"]
class TransformDataset(Dataset):
"""Transform Dataset.
Args:
data: list object from make_batchset
transfrom: transform function
"""
def __init__(self, data, transform):
"""Init function."""
super().__init__()
self.data = data
self.transform = transform
def __len__(self):
"""Len function."""
return len(self.data)
def __getitem__(self, idx):
"""[] operator."""
return self.transform(self.data[idx])

@ -0,0 +1,409 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
import kaldiio
import numpy as np
import soundfile
from deepspeech.frontend.augmentor.augmentation import AugmentationPipeline
from deepspeech.utils.log import Log
__all__ = ["LoadInputsAndTargets"]
logger = Log(__name__).getlog()
class LoadInputsAndTargets():
"""Create a mini-batch from a list of dicts
>>> batch = [('utt1',
... dict(input=[dict(feat='some.ark:123',
... filetype='mat',
... name='input1',
... shape=[100, 80])],
... output=[dict(tokenid='1 2 3 4',
... name='target1',
... shape=[4, 31])]]))
>>> l = LoadInputsAndTargets()
>>> feat, target = l(batch)
:param: str mode: Specify the task mode, "asr" or "tts"
:param: str preprocess_conf: The path of a json file for pre-processing
:param: bool load_input: If False, not to load the input data
:param: bool load_output: If False, not to load the output data
:param: bool sort_in_input_length: Sort the mini-batch in descending order
of the input length
:param: bool use_speaker_embedding: Used for tts mode only
:param: bool use_second_target: Used for tts mode only
:param: dict preprocess_args: Set some optional arguments for preprocessing
:param: Optional[dict] preprocess_args: Used for tts mode only
"""
def __init__(
self,
mode="asr",
preprocess_conf=None,
load_input=True,
load_output=True,
sort_in_input_length=True,
preprocess_args=None,
keep_all_data_on_mem=False, ):
self._loaders = {}
if mode not in ["asr"]:
raise ValueError("Only asr are allowed: mode={}".format(mode))
if preprocess_conf is not None:
self.preprocessing = AugmentationPipeline(preprocess_conf)
logging.warning(
"[Experimental feature] Some preprocessing will be done "
"for the mini-batch creation using {}".format(
self.preprocessing))
else:
# If conf doesn't exist, this function don't touch anything.
self.preprocessing = None
self.mode = mode
self.load_output = load_output
self.load_input = load_input
self.sort_in_input_length = sort_in_input_length
if preprocess_args is None:
self.preprocess_args = {}
else:
assert isinstance(preprocess_args, dict), type(preprocess_args)
self.preprocess_args = dict(preprocess_args)
self.keep_all_data_on_mem = keep_all_data_on_mem
def __call__(self, batch, return_uttid=False):
"""Function to load inputs and targets from list of dicts
:param List[Tuple[str, dict]] batch: list of dict which is subset of
loaded data.json
:param bool return_uttid: return utterance ID information for visualization
:return: list of input token id sequences [(L_1), (L_2), ..., (L_B)]
:return: list of input feature sequences
[(T_1, D), (T_2, D), ..., (T_B, D)]
:rtype: list of float ndarray
:return: list of target token id sequences [(L_1), (L_2), ..., (L_B)]
:rtype: list of int ndarray
"""
x_feats_dict = OrderedDict() # OrderedDict[str, List[np.ndarray]]
y_feats_dict = OrderedDict() # OrderedDict[str, List[np.ndarray]]
uttid_list = [] # List[str]
for uttid, info in batch:
uttid_list.append(uttid)
if self.load_input:
# Note(kamo): This for-loop is for multiple inputs
for idx, inp in enumerate(info["input"]):
# {"input":
# [{"feat": "some/path.h5:F01_050C0101_PED_REAL",
# "filetype": "hdf5",
# "name": "input1", ...}], ...}
x = self._get_from_loader(
filepath=inp["feat"],
filetype=inp.get("filetype", "mat"))
x_feats_dict.setdefault(inp["name"], []).append(x)
if self.load_output:
for idx, inp in enumerate(info["output"]):
if "tokenid" in inp:
# ======= Legacy format for output =======
# {"output": [{"tokenid": "1 2 3 4"}])
x = np.fromiter(
map(int, inp["tokenid"].split()), dtype=np.int64)
else:
# ======= New format =======
# {"input":
# [{"feat": "some/path.h5:F01_050C0101_PED_REAL",
# "filetype": "hdf5",
# "name": "target1", ...}], ...}
x = self._get_from_loader(
filepath=inp["feat"],
filetype=inp.get("filetype", "mat"))
y_feats_dict.setdefault(inp["name"], []).append(x)
if self.mode == "asr":
return_batch, uttid_list = self._create_batch_asr(
x_feats_dict, y_feats_dict, uttid_list)
else:
raise NotImplementedError(self.mode)
if self.preprocessing is not None:
# Apply pre-processing all input features
for x_name in return_batch.keys():
if x_name.startswith("input"):
return_batch[x_name] = self.preprocessing(
return_batch[x_name], uttid_list,
**self.preprocess_args)
if return_uttid:
return tuple(return_batch.values()), uttid_list
# Doesn't return the names now.
return tuple(return_batch.values())
def _create_batch_asr(self, x_feats_dict, y_feats_dict, uttid_list):
"""Create a OrderedDict for the mini-batch
:param OrderedDict x_feats_dict:
e.g. {"input1": [ndarray, ndarray, ...],
"input2": [ndarray, ndarray, ...]}
:param OrderedDict y_feats_dict:
e.g. {"target1": [ndarray, ndarray, ...],
"target2": [ndarray, ndarray, ...]}
:param: List[str] uttid_list:
Give uttid_list to sort in the same order as the mini-batch
:return: batch, uttid_list
:rtype: Tuple[OrderedDict, List[str]]
"""
# handle single-input and multi-input (paralell) asr mode
xs = list(x_feats_dict.values())
if self.load_output:
ys = list(y_feats_dict.values())
assert len(xs[0]) == len(ys[0]), (len(xs[0]), len(ys[0]))
# get index of non-zero length samples
nonzero_idx = list(
filter(lambda i: len(ys[0][i]) > 0, range(len(ys[0]))))
for n in range(1, len(y_feats_dict)):
nonzero_idx = filter(lambda i: len(ys[n][i]) > 0, nonzero_idx)
else:
# Note(kamo): Be careful not to make nonzero_idx to a generator
nonzero_idx = list(range(len(xs[0])))
if self.sort_in_input_length:
# sort in input lengths based on the first input
nonzero_sorted_idx = sorted(
nonzero_idx, key=lambda i: -len(xs[0][i]))
else:
nonzero_sorted_idx = nonzero_idx
if len(nonzero_sorted_idx) != len(xs[0]):
logging.warning(
"Target sequences include empty tokenid (batch {} -> {}).".
format(len(xs[0]), len(nonzero_sorted_idx)))
# remove zero-length samples
xs = [[x[i] for i in nonzero_sorted_idx] for x in xs]
uttid_list = [uttid_list[i] for i in nonzero_sorted_idx]
x_names = list(x_feats_dict.keys())
if self.load_output:
ys = [[y[i] for i in nonzero_sorted_idx] for y in ys]
y_names = list(y_feats_dict.keys())
# Keeping x_name and y_name, e.g. input1, for future extension
return_batch = OrderedDict([
* [(x_name, x) for x_name, x in zip(x_names, xs)],
* [(y_name, y) for y_name, y in zip(y_names, ys)],
])
else:
return_batch = OrderedDict(
[(x_name, x) for x_name, x in zip(x_names, xs)])
return return_batch, uttid_list
def _get_from_loader(self, filepath, filetype):
"""Return ndarray
In order to make the fds to be opened only at the first referring,
the loader are stored in self._loaders
>>> ndarray = loader.get_from_loader(
... 'some/path.h5:F01_050C0101_PED_REAL', filetype='hdf5')
:param: str filepath:
:param: str filetype:
:return:
:rtype: np.ndarray
"""
if filetype == "hdf5":
# e.g.
# {"input": [{"feat": "some/path.h5:F01_050C0101_PED_REAL",
# "filetype": "hdf5",
# -> filepath = "some/path.h5", key = "F01_050C0101_PED_REAL"
filepath, key = filepath.split(":", 1)
loader = self._loaders.get(filepath)
if loader is None:
# To avoid disk access, create loader only for the first time
loader = h5py.File(filepath, "r")
self._loaders[filepath] = loader
return loader[key][()]
elif filetype == "sound.hdf5":
# e.g.
# {"input": [{"feat": "some/path.h5:F01_050C0101_PED_REAL",
# "filetype": "sound.hdf5",
# -> filepath = "some/path.h5", key = "F01_050C0101_PED_REAL"
filepath, key = filepath.split(":", 1)
loader = self._loaders.get(filepath)
if loader is None:
# To avoid disk access, create loader only for the first time
loader = SoundHDF5File(filepath, "r", dtype="int16")
self._loaders[filepath] = loader
array, rate = loader[key]
return array
elif filetype == "sound":
# e.g.
# {"input": [{"feat": "some/path.wav",
# "filetype": "sound"},
# Assume PCM16
if not self.keep_all_data_on_mem:
array, _ = soundfile.read(filepath, dtype="int16")
return array
if filepath not in self._loaders:
array, _ = soundfile.read(filepath, dtype="int16")
self._loaders[filepath] = array
return self._loaders[filepath]
elif filetype == "npz":
# e.g.
# {"input": [{"feat": "some/path.npz:F01_050C0101_PED_REAL",
# "filetype": "npz",
filepath, key = filepath.split(":", 1)
loader = self._loaders.get(filepath)
if loader is None:
# To avoid disk access, create loader only for the first time
loader = np.load(filepath)
self._loaders[filepath] = loader
return loader[key]
elif filetype == "npy":
# e.g.
# {"input": [{"feat": "some/path.npy",
# "filetype": "npy"},
if not self.keep_all_data_on_mem:
return np.load(filepath)
if filepath not in self._loaders:
self._loaders[filepath] = np.load(filepath)
return self._loaders[filepath]
elif filetype in ["mat", "vec"]:
# e.g.
# {"input": [{"feat": "some/path.ark:123",
# "filetype": "mat"}]},
# In this case, "123" indicates the starting points of the matrix
# load_mat can load both matrix and vector
if not self.keep_all_data_on_mem:
return kaldiio.load_mat(filepath)
if filepath not in self._loaders:
self._loaders[filepath] = kaldiio.load_mat(filepath)
return self._loaders[filepath]
elif filetype == "scp":
# e.g.
# {"input": [{"feat": "some/path.scp:F01_050C0101_PED_REAL",
# "filetype": "scp",
filepath, key = filepath.split(":", 1)
loader = self._loaders.get(filepath)
if loader is None:
# To avoid disk access, create loader only for the first time
loader = kaldiio.load_scp(filepath)
self._loaders[filepath] = loader
return loader[key]
else:
raise NotImplementedError(
"Not supported: loader_type={}".format(filetype))
class SoundHDF5File():
"""Collecting sound files to a HDF5 file
>>> f = SoundHDF5File('a.flac.h5', mode='a')
>>> array = np.random.randint(0, 100, 100, dtype=np.int16)
>>> f['id'] = (array, 16000)
>>> array, rate = f['id']
:param: str filepath:
:param: str mode:
:param: str format: The type used when saving wav. flac, nist, htk, etc.
:param: str dtype:
"""
def __init__(self,
filepath,
mode="r+",
format=None,
dtype="int16",
**kwargs):
self.filepath = filepath
self.mode = mode
self.dtype = dtype
self.file = h5py.File(filepath, mode, **kwargs)
if format is None:
# filepath = a.flac.h5 -> format = flac
second_ext = os.path.splitext(os.path.splitext(filepath)[0])[1]
format = second_ext[1:]
if format.upper() not in soundfile.available_formats():
# If not found, flac is selected
format = "flac"
# This format affects only saving
self.format = format
def __repr__(self):
return '<SoundHDF5 file "{}" (mode {}, format {}, type {})>'.format(
self.filepath, self.mode, self.format, self.dtype)
def create_dataset(self, name, shape=None, data=None, **kwds):
f = io.BytesIO()
array, rate = data
soundfile.write(f, array, rate, format=self.format)
self.file.create_dataset(
name, shape=shape, data=np.void(f.getvalue()), **kwds)
def __setitem__(self, name, data):
self.create_dataset(name, data=data)
def __getitem__(self, key):
data = self.file[key][()]
f = io.BytesIO(data.tobytes())
array, rate = soundfile.read(f, dtype=self.dtype)
return array, rate
def keys(self):
return self.file.keys()
def values(self):
for k in self.file:
yield self[k]
def items(self):
for k in self.file:
yield k, self[k]
def __iter__(self):
return iter(self.file)
def __contains__(self, item):
return item in self.file
def __len__(self, item):
return len(self.file)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.file.close()
def close(self):
self.file.close()

@ -17,11 +17,16 @@ import numpy as np
from deepspeech.utils.log import Log
__all__ = ["pad_sequence"]
__all__ = ["pad_list", "pad_sequence"]
logger = Log(__name__).getlog()
def pad_list(sequences: List[np.ndarray],
padding_value: float=0.0) -> np.ndarray:
return pad_sequence(sequences, True, padding_value)
def pad_sequence(sequences: List[np.ndarray],
batch_first: bool=True,
padding_value: float=0.0) -> np.ndarray:

@ -297,7 +297,7 @@ class RNNStack(nn.Layer):
share_weights=share_rnn_weights))
i_size = h_size * 2
self.rnn_stacks = nn.ModuleList(rnn_stacks)
self.rnn_stacks = nn.LayerList(rnn_stacks)
def forward(self, x: paddle.Tensor, x_len: paddle.Tensor):
"""

@ -54,7 +54,7 @@ __all__ = ["U2Model", "U2InferModel"]
logger = Log(__name__).getlog()
class U2BaseModel(nn.Module):
class U2BaseModel(nn.Layer):
"""CTC-Attention hybrid Encoder-Decoder model"""
@classmethod

@ -48,7 +48,7 @@ __all__ = ["U2STModel", "U2STInferModel"]
logger = Log(__name__).getlog()
class U2STBaseModel(nn.Module):
class U2STBaseModel(nn.Layer):
"""CTC-Attention hybrid Encoder-Decoder model"""
@classmethod

@ -33,7 +33,7 @@ logger = Log(__name__).getlog()
__all__ = ["TransformerDecoder"]
class TransformerDecoder(nn.Module):
class TransformerDecoder(nn.Layer):
"""Base class of Transfomer decoder module.
Args:
vocab_size: output dim
@ -86,7 +86,7 @@ class TransformerDecoder(nn.Module):
self.use_output_layer = use_output_layer
self.output_layer = nn.Linear(attention_dim, vocab_size)
self.decoders = nn.ModuleList([
self.decoders = nn.LayerList([
DecoderLayer(
size=attention_dim,
self_attn=MultiHeadedAttention(attention_heads, attention_dim,

@ -25,15 +25,15 @@ logger = Log(__name__).getlog()
__all__ = ["DecoderLayer"]
class DecoderLayer(nn.Module):
class DecoderLayer(nn.Layer):
"""Single decoder layer module.
Args:
size (int): Input dimension.
self_attn (nn.Module): Self-attention module instance.
self_attn (nn.Layer): Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument.
src_attn (nn.Module): Self-attention module instance.
src_attn (nn.Layer): Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument.
feed_forward (nn.Module): Feed-forward module instance.
feed_forward (nn.Layer): Feed-forward module instance.
`PositionwiseFeedForward` instance can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool):
@ -48,9 +48,9 @@ class DecoderLayer(nn.Module):
def __init__(
self,
size: int,
self_attn: nn.Module,
src_attn: nn.Module,
feed_forward: nn.Module,
self_attn: nn.Layer,
src_attn: nn.Layer,
feed_forward: nn.Layer,
dropout_rate: float,
normalize_before: bool=True,
concat_after: bool=False, ):

@ -358,7 +358,7 @@ class TransformerEncoder(BaseEncoder):
pos_enc_layer_type, normalize_before, concat_after,
static_chunk_size, use_dynamic_chunk, global_cmvn,
use_dynamic_left_chunk)
self.encoders = nn.ModuleList([
self.encoders = nn.LayerList([
TransformerEncoderLayer(
size=output_size,
self_attn=MultiHeadedAttention(attention_heads, output_size,
@ -438,7 +438,7 @@ class ConformerEncoder(BaseEncoder):
convolution_layer_args = (output_size, cnn_module_kernel, activation,
cnn_module_norm, causal)
self.encoders = nn.ModuleList([
self.encoders = nn.LayerList([
ConformerEncoderLayer(
size=output_size,
self_attn=encoder_selfattn_layer(*encoder_selfattn_layer_args),

@ -48,7 +48,8 @@ class CTCLoss(nn.Layer):
logits = logits.transpose([1, 0, 2])
# (TODO:Hui Zhang) ctc loss does not support int64 labels
ys_pad = ys_pad.astype(paddle.int32)
loss = self.loss(logits, ys_pad, hlens, ys_lens)
loss = self.loss(
logits, ys_pad, hlens, ys_lens, norm_by_times=self.batch_average)
if self.batch_average:
# Batch-size average
loss = loss / B

@ -297,7 +297,7 @@ class RNNStack(nn.Layer):
share_weights=share_rnn_weights))
i_size = h_size * 2
self.rnn_stacks = nn.ModuleList(rnn_stacks)
self.rnn_stacks = nn.LayerList(rnn_stacks)
def forward(self, x: paddle.Tensor, x_len: paddle.Tensor):
"""

@ -21,7 +21,6 @@
| --- | --- | --- | --- | --- | --- | --- | --- |
| conformer | 47.63 M | conf/conformer.yaml | spec_aug + shift | test-clean-all | attention | 6.35 | 0.057117 |
## Chunk Conformer
| Model | Params | Config | Augmentation| Test set | Decode method | Chunk Size & Left Chunks | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
@ -39,4 +38,7 @@
### Test w/o length filter
| Model | Params | Config | Augmentation| Test set | Decode method | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- | --- |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug + shift | test-clean-all | attention | 6.98 | 0.066500 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug + shift | test-clean-all | attention | 7.63 | 0.056832 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug + shift | test-clean-all | ctc_greedy_search | 7.63 | 0.059742 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug + shift | test-clean-all | ctc_prefix_beam_search | 7.63 | 0.059057 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug + shift | test-clean-all | attention_rescoring | 7.63 | 0.047417 |

@ -4,7 +4,7 @@ data:
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test-clean
min_input_len: 0.5 # second
max_input_len: 20.0 # second
max_input_len: 30.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.05

@ -5,7 +5,7 @@ source path.sh
stage=0
stop_stage=100
conf_path=conf/transformer.yaml
avg_num=30
avg_num=5
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
avg_ckpt=avg_${avg_num}

@ -0,0 +1,36 @@
#!/usr/bin/env python
import argparse
import json
def main(args):
with open(args.json_file, 'r') as fin:
data_json = json.load(fin)
# manifest format:
# {"input": [
# {"feat": "dev/deltafalse/feats.1.ark:842920", "name": "input1", "shape": [349, 83]}
# ],
# "output": [
# {"name": "target1", "shape": [12, 5002], "text": "NO APOLLO", "token": "▁NO ▁A PO LL O", "tokenid": "3144 482 352 269 317"}
# ],
# "utt2spk": "116-288045",
# "utt": "116-288045-0019"}
with open(args.manifest_file, 'w') as fout:
for key, value in data_json['utts'].items():
value['utt'] = key
fout.write(json.dumps(value, ensure_ascii=False))
fout.write("\n")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--json-file', type=str, default=None, help="espnet data json file.")
parser.add_argument(
'--manifest-file',
type=str,
default='maniefst.train',
help='manifest data json line file.')
args = parser.parse_args()
main(args)

@ -5,7 +5,7 @@ source path.sh
stage=0
stop_stage=100
conf_path=conf/transformer.yaml
avg_num=30
avg_num=5
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
avg_ckpt=avg_${avg_num}

@ -1,5 +1,6 @@
coverage
gpustat
kaldiio
pre-commit
pybind11
resampy==0.2.2

Loading…
Cancel
Save